1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use app_units::{Au, MAX_AU};
use euclid::point::Point2D;
use euclid::rect::Rect;
use euclid::size::Size2D;
use std::i32;
use std::ops::Add;
// Units for use with euclid::length and euclid::scale_factor.
/// A normalized "pixel" at the default resolution for the display.
///
/// Like the CSS "px" unit, the exact physical size of this unit may vary between devices, but it
/// should approximate a device-independent reference length. This unit corresponds to Android's
/// "density-independent pixel" (dip), Mac OS X's "point", and Windows "device-independent pixel."
///
/// The relationship between DevicePixel and ScreenPx is defined by the OS. On most low-dpi
/// screens, one ScreenPx is equal to one DevicePixel. But on high-density screens it can be
/// some larger number. For example, by default on Apple "retina" displays, one ScreenPx equals
/// two DevicePixels. On Android "MDPI" displays, one ScreenPx equals 1.5 device pixels.
///
/// The ratio between ScreenPx and DevicePixel for a given display be found by calling
/// `servo::windowing::WindowMethods::hidpi_factor`.
#[derive(Debug, Copy, Clone)]
pub enum ScreenPx {}
/// One CSS "px" in the coordinate system of the "initial viewport":
/// http://www.w3.org/TR/css-device-adapt/#initial-viewport
///
/// ViewportPx is equal to ScreenPx times a "page zoom" factor controlled by the user. This is
/// the desktop-style "full page" zoom that enlarges content but then reflows the layout viewport
/// so it still exactly fits the visible area.
///
/// At the default zoom level of 100%, one PagePx is equal to one ScreenPx. However, if the
/// document is zoomed in or out then this scale may be larger or smaller.
#[derive(RustcEncodable, Debug, Copy, Clone)]
pub enum ViewportPx {}
/// One CSS "px" in the root coordinate system for the content document.
///
/// PagePx is equal to ViewportPx multiplied by a "viewport zoom" factor controlled by the user.
/// This is the mobile-style "pinch zoom" that enlarges content without reflowing it. When the
/// viewport zoom is not equal to 1.0, then the layout viewport is no longer the same physical size
/// as the viewable area.
#[derive(RustcEncodable, Debug, Copy, Clone)]
pub enum PagePx {}
// In summary, the hierarchy of pixel units and the factors to convert from one to the next:
//
// DevicePixel
// / hidpi_ratio => ScreenPx
// / desktop_zoom => ViewportPx
// / pinch_zoom => PagePx
// An Au is an "App Unit" and represents 1/60th of a CSS pixel. It was
// originally proposed in 2002 as a standard unit of measure in Gecko.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=177805 for more info.
pub static ZERO_POINT: Point2D<Au> = Point2D {
x: Au(0),
y: Au(0),
};
pub static MAX_RECT: Rect<Au> = Rect {
origin: Point2D {
x: Au(i32::MIN / 2),
y: Au(i32::MIN / 2),
},
size: Size2D {
width: MAX_AU,
height: MAX_AU,
}
};
/// A helper function to convert a rect of `f32` pixels to a rect of app units.
pub fn f32_rect_to_au_rect(rect: Rect<f32>) -> Rect<Au> {
Rect::new(Point2D::new(Au::from_f32_px(rect.origin.x), Au::from_f32_px(rect.origin.y)),
Size2D::new(Au::from_f32_px(rect.size.width), Au::from_f32_px(rect.size.height)))
}
/// A helper function to convert a rect of `Au` pixels to a rect of f32 units.
pub fn au_rect_to_f32_rect(rect: Rect<Au>) -> Rect<f32> {
Rect::new(Point2D::new(rect.origin.x.to_f32_px(), rect.origin.y.to_f32_px()),
Size2D::new(rect.size.width.to_f32_px(), rect.size.height.to_f32_px()))
}
pub trait ExpandToPixelBoundaries {
fn expand_to_px_boundaries(&self) -> Self;
}
impl ExpandToPixelBoundaries for Rect<Au> {
fn expand_to_px_boundaries(&self) -> Rect<Au> {
let bottom_right = self.bottom_right();
let bottom_right = Point2D::new(Au::from_px(bottom_right.x.ceil_to_px()),
Au::from_px(bottom_right.y.ceil_to_px()));
let new_origin = Point2D::new(Au::from_px(self.origin.x.to_px()),
Au::from_px(self.origin.y.to_px()));
Rect::new(new_origin,
Size2D::new(bottom_right.x - new_origin.x,
bottom_right.y - new_origin.y))
}
}
|