aboutsummaryrefslogtreecommitdiffstats
path: root/components/style/traversal.rs
blob: 5c413b9c6bb54b645123a2a4de7b67853e8d3e79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Traversing the DOM tree; the bloom filter.

#![deny(missing_docs)]

use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use context::{SharedStyleContext, StyleContext, ThreadLocalStyleContext};
use data::{ElementData, ElementStyles, StoredRestyleHint};
use dom::{NodeInfo, TElement, TNode};
use matching::{MatchMethods, MatchResults};
use restyle_hints::{RESTYLE_DESCENDANTS, RESTYLE_SELF};
use selector_parser::RestyleDamage;
use servo_config::opts;
use std::borrow::BorrowMut;
use std::mem;
use stylist::Stylist;

/// A per-traversal-level chunk of data. This is sent down by the traversal, and
/// currently only holds the dom depth for the bloom filter.
///
/// NB: Keep this as small as possible, please!
#[derive(Clone, Debug)]
pub struct PerLevelTraversalData {
    /// The current dom depth, if known, or `None` otherwise.
    ///
    /// This is kept with cooperation from the traversal code and the bloom
    /// filter.
    pub current_dom_depth: Option<usize>,
}

/// This structure exists to enforce that callers invoke pre_traverse, and also
/// to pass information from the pre-traversal into the primary traversal.
pub struct PreTraverseToken {
    traverse: bool,
    unstyled_children_only: bool,
}

impl PreTraverseToken {
    /// Whether we should traverse children.
    pub fn should_traverse(&self) -> bool {
        self.traverse
    }

    /// Whether we should traverse only unstyled children.
    pub fn traverse_unstyled_children_only(&self) -> bool {
        self.unstyled_children_only
    }
}

/// Enum to prevent duplicate logging.
pub enum LogBehavior {
    /// We should log.
    MayLog,
    /// We shouldn't log.
    DontLog,
}
use self::LogBehavior::*;
impl LogBehavior {
    fn allow(&self) -> bool { matches!(*self, MayLog) }
}

/// The kind of traversals we could perform.
#[derive(Debug, Copy, Clone)]
pub enum TraversalDriver {
    /// A potentially parallel traversal.
    Parallel,
    /// A sequential traversal.
    Sequential,
}

impl TraversalDriver {
    /// Returns whether this represents a parallel traversal or not.
    #[inline]
    pub fn is_parallel(&self) -> bool {
        matches!(*self, TraversalDriver::Parallel)
    }
}

/// A DOM Traversal trait, that is used to generically implement styling for
/// Gecko and Servo.
pub trait DomTraversal<E: TElement> : Sync {
    /// The thread-local context, used to store non-thread-safe stuff that needs
    /// to be used in the traversal, and of which we use one per worker, like
    /// the bloom filter, for example.
    type ThreadLocalContext: Send + BorrowMut<ThreadLocalStyleContext<E>>;

    /// Process `node` on the way down, before its children have been processed.
    fn process_preorder(&self, data: &mut PerLevelTraversalData,
                        thread_local: &mut Self::ThreadLocalContext,
                        node: E::ConcreteNode);

    /// Process `node` on the way up, after its children have been processed.
    ///
    /// This is only executed if `needs_postorder_traversal` returns true.
    fn process_postorder(&self,
                         thread_local: &mut Self::ThreadLocalContext,
                         node: E::ConcreteNode);

    /// Boolean that specifies whether a bottom up traversal should be
    /// performed.
    ///
    /// If it's false, then process_postorder has no effect at all.
    fn needs_postorder_traversal() -> bool { true }

    /// Must be invoked before traversing the root element to determine whether
    /// a traversal is needed. Returns a token that allows the caller to prove
    /// that the call happened.
    ///
    /// The unstyled_children_only parameter is used in Gecko to style newly-
    /// appended children without restyling the parent.
    fn pre_traverse(root: E, stylist: &Stylist, unstyled_children_only: bool)
                    -> PreTraverseToken
    {
        if unstyled_children_only {
            return PreTraverseToken {
                traverse: true,
                unstyled_children_only: true,
            };
        }

        // Expand the snapshot, if any. This is normally handled by the parent, so
        // we need a special case for the root.
        //
        // Expanding snapshots here may create a LATER_SIBLINGS restyle hint, which
        // we will drop on the floor. To prevent missed restyles, we assert against
        // restyling a root with later siblings.
        if let Some(mut data) = root.mutate_data() {
            if let Some(r) = data.get_restyle_mut() {
                debug_assert!(root.next_sibling_element().is_none());
                let _later_siblings = r.compute_final_hint(root, stylist);
            }
        }

        PreTraverseToken {
            traverse: Self::node_needs_traversal(root.as_node()),
            unstyled_children_only: false,
        }
    }

    /// Returns true if traversal should visit a text node. The style system never
    /// processes text nodes, but Servo overrides this to visit them for flow
    /// construction when necessary.
    fn text_node_needs_traversal(node: E::ConcreteNode) -> bool {
        debug_assert!(node.is_text_node());
        false
    }

    /// Returns true if traversal is needed for the given node and subtree.
    fn node_needs_traversal(node: E::ConcreteNode) -> bool {
        // Non-incremental layout visits every node.
        if cfg!(feature = "servo") && opts::get().nonincremental_layout {
            return true;
        }

        match node.as_element() {
            None => Self::text_node_needs_traversal(node),
            Some(el) => {
                // If the dirty descendants bit is set, we need to traverse no
                // matter what. Skip examining the ElementData.
                if el.has_dirty_descendants() {
                    return true;
                }

                // Check the element data. If it doesn't exist, we need to visit
                // the element.
                let data = match el.borrow_data() {
                    Some(d) => d,
                    None => return true,
                };

                // If we don't have any style data, we need to visit the element.
                if !data.has_styles() {
                    return true;
                }

                // Check the restyle data.
                if let Some(r) = data.get_restyle() {
                    // If we have a restyle hint or need to recascade, we need to
                    // visit the element.
                    //
                    // Note that this is different than checking has_current_styles(),
                    // since that can return true even if we have a restyle hint
                    // indicating that the element's descendants (but not necessarily
                    // the element) need restyling.
                    if !r.hint.is_empty() || r.recascade {
                        return true;
                    }
                }

                // Servo uses the post-order traversal for flow construction, so
                // we need to traverse any element with damage so that we can perform
                // fixup / reconstruction on our way back up the tree.
                if cfg!(feature = "servo") &&
                   data.get_restyle().map_or(false, |r| r.damage != RestyleDamage::empty())
                {
                    return true;
                }

                false
            },
        }
    }

    /// Returns true if traversal of this element's children is allowed. We use
    /// this to cull traversal of various subtrees.
    ///
    /// This may be called multiple times when processing an element, so we pass
    /// a parameter to keep the logs tidy.
    fn should_traverse_children(&self,
                                thread_local: &mut ThreadLocalStyleContext<E>,
                                parent: E,
                                parent_data: &ElementData,
                                log: LogBehavior) -> bool
    {
        // See the comment on `cascade_node` for why we allow this on Gecko.
        debug_assert!(cfg!(feature = "gecko") || parent_data.has_current_styles());

        // If the parent computed display:none, we don't style the subtree.
        if parent_data.styles().is_display_none() {
            if log.allow() { debug!("Parent {:?} is display:none, culling traversal", parent); }
            return false;
        }

        // Gecko-only XBL handling.
        //
        // If we're computing initial styles and the parent has a Gecko XBL
        // binding, that binding may inject anonymous children and remap the
        // explicit children to an insertion point (or hide them entirely). It
        // may also specify a scoped stylesheet, which changes the rules that
        // apply within the subtree. These two effects can invalidate the result
        // of property inheritance and selector matching (respectively) within the
        // subtree.
        //
        // To avoid wasting work, we defer initial styling of XBL subtrees
        // until frame construction, which does an explicit traversal of the
        // unstyled children after shuffling the subtree. That explicit
        // traversal may in turn find other bound elements, which get handled
        // in the same way.
        //
        // We explicitly avoid handling restyles here (explicitly removing or
        // changing bindings), since that adds complexity and is rarer. If it
        // happens, we may just end up doing wasted work, since Gecko
        // recursively drops Servo ElementData when the XBL insertion parent of
        // an Element is changed.
        if cfg!(feature = "gecko") && thread_local.is_initial_style() &&
           parent_data.styles().primary.values().has_moz_binding() {
            if log.allow() { debug!("Parent {:?} has XBL binding, deferring traversal", parent); }
            return false;
        }

        return true;

    }

    /// Helper for the traversal implementations to select the children that
    /// should be enqueued for processing.
    fn traverse_children<F>(&self, thread_local: &mut Self::ThreadLocalContext, parent: E, mut f: F)
        where F: FnMut(&mut Self::ThreadLocalContext, E::ConcreteNode)
    {
        // Check if we're allowed to traverse past this element.
        let should_traverse =
            self.should_traverse_children(thread_local.borrow_mut(), parent,
                                          &parent.borrow_data().unwrap(), MayLog);
        thread_local.borrow_mut().end_element(parent);
        if !should_traverse {
            return;
        }

        for kid in parent.as_node().children() {
            if Self::node_needs_traversal(kid) {
                let el = kid.as_element();
                if el.as_ref().and_then(|el| el.borrow_data())
                              .map_or(false, |d| d.has_styles())
                {
                    unsafe { parent.set_dirty_descendants(); }
                }
                f(thread_local, kid);
            }
        }
    }

    /// Ensures the existence of the ElementData, and returns it. This can't live
    /// on TNode because of the trait-based separation between Servo's script
    /// and layout crates.
    ///
    /// This is only safe to call in top-down traversal before processing the
    /// children of |element|.
    unsafe fn ensure_element_data(element: &E) -> &AtomicRefCell<ElementData>;

    /// Clears the ElementData attached to this element, if any.
    ///
    /// This is only safe to call in top-down traversal before processing the
    /// children of |element|.
    unsafe fn clear_element_data(element: &E);

    /// Return the shared style context common to all worker threads.
    fn shared_context(&self) -> &SharedStyleContext;

    /// Creates a thread-local context.
    fn create_thread_local_context(&self) -> Self::ThreadLocalContext;

    /// Whether we're performing a parallel traversal.
    ///
    /// NB: We do this check on runtime. We could guarantee correctness in this
    /// regard via the type system via a `TraversalDriver` trait for this trait,
    /// that could be one of two concrete types. It's not clear whether the
    /// potential code size impact of that is worth it.
    fn is_parallel(&self) -> bool;
}

/// Helper for the function below.
fn resolve_style_internal<E, F>(context: &mut StyleContext<E>, element: E, ensure_data: &F)
                                -> Option<E>
    where E: TElement,
          F: Fn(E),
{
    ensure_data(element);
    let mut data = element.mutate_data().unwrap();
    let mut display_none_root = None;

    // If the Element isn't styled, we need to compute its style.
    if data.get_styles().is_none() {
        // Compute the parent style if necessary.
        let parent = element.parent_element();
        if let Some(p) = parent {
            display_none_root = resolve_style_internal(context, p, ensure_data);
        }

        // Maintain the bloom filter. If it doesn't exist, we need to build it
        // from scratch. Otherwise we just need to push the parent.
        if context.thread_local.bloom_filter.is_empty() {
            context.thread_local.bloom_filter.rebuild(element);
        } else {
            context.thread_local.bloom_filter.push(parent.unwrap());
            context.thread_local.bloom_filter.assert_complete(element);
        }

        // Compute our style.
        let match_results = element.match_element(context, &mut data);
        element.cascade_element(context, &mut data,
                                match_results.primary_is_shareable());

        // Conservatively mark us as having dirty descendants, since there might
        // be other unstyled siblings we miss when walking straight up the parent
        // chain.
        unsafe { element.set_dirty_descendants() };
    }

    // If we're display:none and none of our ancestors are, we're the root
    // of a display:none subtree.
    if display_none_root.is_none() && data.styles().is_display_none() {
        display_none_root = Some(element);
    }

    return display_none_root
}

/// Manually resolve style by sequentially walking up the parent chain to the
/// first styled Element, ignoring pending restyles. The resolved style is
/// made available via a callback, and can be dropped by the time this function
/// returns in the display:none subtree case.
pub fn resolve_style<E, F, G, H>(context: &mut StyleContext<E>, element: E,
                                 ensure_data: &F, clear_data: &G, callback: H)
    where E: TElement,
          F: Fn(E),
          G: Fn(E),
          H: FnOnce(&ElementStyles)
{
    // Clear the bloom filter, just in case the caller is reusing TLS.
    context.thread_local.bloom_filter.clear();

    // Resolve styles up the tree.
    let display_none_root = resolve_style_internal(context, element, ensure_data);

    // Make them available for the scope of the callback. The callee may use the
    // argument, or perform any other processing that requires the styles to exist
    // on the Element.
    callback(element.borrow_data().unwrap().styles());

    // Clear any styles in display:none subtrees or subtrees not in the document,
    // to leave the tree in a valid state.  For display:none subtrees, we leave
    // the styles on the display:none root, but for subtrees not in the document,
    // we clear styles all the way up to the root of the disconnected subtree.
    let in_doc = element.as_node().is_in_doc();
    if !in_doc || display_none_root.is_some() {
        let mut curr = element;
        loop {
            unsafe { curr.unset_dirty_descendants(); }
            if in_doc && curr == display_none_root.unwrap() {
                break;
            }
            clear_data(curr);
            curr = match curr.parent_element() {
                Some(parent) => parent,
                None => break,
            };
        }
    }
}

/// Calculates the style for a single node.
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<E, D>(traversal: &D,
                             traversal_data: &mut PerLevelTraversalData,
                             context: &mut StyleContext<E>,
                             element: E,
                             mut data: &mut AtomicRefMut<ElementData>)
    where E: TElement,
          D: DomTraversal<E>
{
    context.thread_local.begin_element(element, &data);
    context.thread_local.statistics.elements_traversed += 1;
    debug_assert!(data.get_restyle().map_or(true, |r| {
        r.snapshot.is_none() && !r.has_sibling_invalidations()
    }), "Should've computed the final hint and handled later_siblings already");

    let compute_self = !data.has_current_styles();
    let mut inherited_style_changed = false;

    debug!("recalc_style_at: {:?} (compute_self={:?}, dirty_descendants={:?}, data={:?})",
           element, compute_self, element.has_dirty_descendants(), data);

    // Compute style for this element if necessary.
    if compute_self {
        compute_style(traversal, traversal_data, context, element, &mut data);

        // If we're restyling this element to display:none, throw away all style
        // data in the subtree, notify the caller to early-return.
        let display_none = data.styles().is_display_none();
        if display_none {
            debug!("New element style is display:none - clearing data from descendants.");
            clear_descendant_data(element, &|e| unsafe { D::clear_element_data(&e) });
        }

        // FIXME(bholley): Compute this accurately from the call to CalcStyleDifference.
        inherited_style_changed = true;
    }

    // Now that matching and cascading is done, clear the bits corresponding to
    // those operations and compute the propagated restyle hint.
    let empty_hint = StoredRestyleHint::empty();
    let propagated_hint = match data.get_restyle_mut() {
        None => empty_hint,
        Some(r) => {
            r.recascade = false;
            mem::replace(&mut r.hint, empty_hint).propagate()
        },
    };
    debug_assert!(data.has_current_styles());
    trace!("propagated_hint={:?}, inherited_style_changed={:?}", propagated_hint, inherited_style_changed);

    // Preprocess children, propagating restyle hints and handling sibling relationships.
    if traversal.should_traverse_children(&mut context.thread_local, element, &data, DontLog) &&
       (element.has_dirty_descendants() || !propagated_hint.is_empty() || inherited_style_changed) {
        let damage_handled = data.get_restyle().map_or(RestyleDamage::empty(), |r| {
            r.damage_handled() | r.damage.handled_for_descendants()
        });
        preprocess_children(traversal, element, propagated_hint, damage_handled, inherited_style_changed);
    }

    // Make sure the dirty descendants bit is not set for the root of a
    // display:none subtree, even if the style didn't change (since, if
    // the style did change, we'd have already cleared it above).
    //
    // This keeps the tree in a valid state without requiring the DOM to
    // check display:none on the parent when inserting new children (which
    // can be moderately expensive). Instead, DOM implementations can
    // unconditionally set the dirty descendants bit on any styled parent,
    // and let the traversal sort it out.
    if data.styles().is_display_none() {
        unsafe { element.unset_dirty_descendants(); }
    }
}

fn compute_style<E, D>(_traversal: &D,
                       traversal_data: &mut PerLevelTraversalData,
                       context: &mut StyleContext<E>,
                       element: E,
                       mut data: &mut AtomicRefMut<ElementData>)
    where E: TElement,
          D: DomTraversal<E>,
{
    use data::RestyleKind::*;
    use matching::StyleSharingResult::*;

    context.thread_local.statistics.elements_styled += 1;
    let shared_context = context.shared;
    let kind = data.restyle_kind();

    // First, try the style sharing cache. If we get a match we can skip the rest
    // of the work.
    if let MatchAndCascade = kind {
        let sharing_result = unsafe {
            let cache = &mut context.thread_local.style_sharing_candidate_cache;
            element.share_style_if_possible(cache, shared_context, &mut data)
        };
        if let StyleWasShared(index) = sharing_result {
            context.thread_local.statistics.styles_shared += 1;
            context.thread_local.style_sharing_candidate_cache.touch(index);
            return;
        }
    }

    let match_results = match kind {
        MatchAndCascade => {
            // Ensure the bloom filter is up to date.
            let dom_depth =
                context.thread_local.bloom_filter
                       .insert_parents_recovering(element,
                                                  traversal_data.current_dom_depth);

            // Update the dom depth with the up-to-date dom depth.
            //
            // Note that this is always the same than the pre-existing depth,
            // but it can change from unknown to known at this step.
            traversal_data.current_dom_depth = Some(dom_depth);

            context.thread_local.bloom_filter.assert_complete(element);


            // Perform CSS selector matching.
            context.thread_local.statistics.elements_matched += 1;
            element.match_element(context, &mut data)
        }
        CascadeWithReplacements(hint) => {
            let rule_nodes_changed =
                element.cascade_with_replacements(hint, context, &mut data);
            MatchResults {
                primary_relations: None,
                rule_nodes_changed: rule_nodes_changed,
            }
        }
        CascadeOnly => {
            MatchResults {
                primary_relations: None,
                rule_nodes_changed: false,
            }
        }
    };

    // Cascade properties and compute values.
    let shareable = match_results.primary_is_shareable();
    unsafe {
        element.cascade_element(context, &mut data, shareable);
    }

    // If the style is shareable, add it to the LRU cache.
    if shareable {
        context.thread_local
               .style_sharing_candidate_cache
               .insert_if_possible(&element,
                                   data.styles().primary.values(),
                                   match_results.primary_relations.unwrap());
    }
}

fn preprocess_children<E, D>(traversal: &D,
                             element: E,
                             mut propagated_hint: StoredRestyleHint,
                             damage_handled: RestyleDamage,
                             parent_inherited_style_changed: bool)
    where E: TElement,
          D: DomTraversal<E>
{
    // Loop over all the children.
    for child in element.as_node().children() {
        // FIXME(bholley): Add TElement::element_children instead of this.
        let child = match child.as_element() {
            Some(el) => el,
            None => continue,
        };

        let mut child_data = unsafe { D::ensure_element_data(&child).borrow_mut() };

        // If the child is unstyled, we don't need to set up any restyling.
        if !child_data.has_styles() {
            continue;
        }

        // If the child doesn't have pre-existing RestyleData and we don't have
        // any reason to create one, avoid the useless allocation and move on to
        // the next child.
        if propagated_hint.is_empty() && !parent_inherited_style_changed &&
           damage_handled.is_empty() && !child_data.has_restyle() {
            continue;
        }
        let mut restyle_data = child_data.ensure_restyle();

        // Propagate the parent and sibling restyle hint.
        if !propagated_hint.is_empty() {
            restyle_data.hint.insert(&propagated_hint);
        }

        // Handle element snapshots and sibling restyle hints.
        let stylist = &traversal.shared_context().stylist;
        let later_siblings = restyle_data.compute_final_hint(child, stylist);
        if later_siblings {
            propagated_hint.insert(&(RESTYLE_SELF | RESTYLE_DESCENDANTS).into());
        }

        // Store the damage already handled by ancestors.
        restyle_data.set_damage_handled(damage_handled);

        // If properties that we inherited from the parent changed, we need to recascade.
        //
        // FIXME(bholley): Need to handle explicitly-inherited reset properties somewhere.
        if parent_inherited_style_changed {
            restyle_data.recascade = true;
        }
    }
}

/// Clear style data for all the subtree under `el`.
pub fn clear_descendant_data<E: TElement, F: Fn(E)>(el: E, clear_data: &F) {
    for kid in el.as_node().children() {
        if let Some(kid) = kid.as_element() {
            // We maintain an invariant that, if an element has data, all its ancestors
            // have data as well. By consequence, any element without data has no
            // descendants with data.
            if kid.get_data().is_some() {
                clear_data(kid);
                clear_descendant_data(kid, clear_data);
            }
        }
    }

    unsafe { el.unset_dirty_descendants(); }
}