1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! A piecewise linear function, following CSS linear easing
/// draft as in https://github.com/w3c/csswg-drafts/pull/6533.
use euclid::approxeq::ApproxEq;
use itertools::Itertools;
use crate::values::CSSFloat;
type ValueType = CSSFloat;
/// a single entry in a piecewise linear function.
#[derive(Clone, Copy)]
#[repr(C)]
struct Entry {
x: ValueType,
y: ValueType,
}
/// Representation of a piecewise linear function, a series of linear functions.
#[derive(Default)]
#[repr(C)]
pub struct PiecewiseLinearFunction {
entries: crate::OwnedSlice<Entry>,
}
impl PiecewiseLinearFunction {
/// Interpolate y value given x and two points. The linear function will be rooted at the asymptote.
fn interpolate(x: ValueType, prev: Entry, next: Entry, asymptote: &Entry) -> ValueType {
// Line is vertical, or the two points are identical. Avoid infinite slope by pretending
// the line is flat.
if prev.x.approx_eq(&next.x) {
return asymptote.y;
}
let slope = (next.y - prev.y) / (next.x - prev.x);
return slope * (x - asymptote.x) + asymptote.y;
}
/// Get the y value of the piecewise linear function given the x value.
pub fn at(&self, x: ValueType) -> ValueType {
if !x.is_finite() {
return if x > 0.0 { 1.0 } else { 0.0 };
}
if self.entries.is_empty() {
// Implied y = x, as per spec.
return x;
}
if self.entries.len() == 1 {
// Implied y = <constant>, as per spec.
return self.entries[0].y;
}
// Spec dictates the valid input domain is [0, 1]. Outside of this range, the output
// should be calculated as if the slopes at start and end extend to infinity. However, if the
// start/end have two points of the same position, the line should extend along the x-axis.
// The function doesn't have to cover the input domain, in which case the extension logic
// applies even if the input falls in the input domain.
// Also, we're guaranteed to have at least two elements at this point.
if x < self.entries[0].x {
return Self::interpolate(x, self.entries[0], self.entries[1], &self.entries[0]);
}
let mut rev_iter = self.entries.iter().rev();
let last = rev_iter.next().unwrap();
if x > last.x {
let second_last = rev_iter.next().unwrap();
return Self::interpolate(x, *second_last, *last, last);
}
// Now we know the input sits within the domain explicitly defined by our function.
for (prev, next) in self.entries.iter().tuple_windows() {
if x > next.x {
continue;
}
// Prefer left hand side value
if x.approx_eq(&prev.x) {
return prev.y;
}
if x.approx_eq(&next.x) {
return next.y;
}
return Self::interpolate(x, *prev, *next, prev);
}
unreachable!("Input is supposed to be within the entries' min & max!");
}
}
/// Entry of a piecewise linear function while building, where the calculation of x value can be deferred.
#[derive(Clone, Copy)]
struct BuildEntry {
x: Option<ValueType>,
y: ValueType,
}
/// Builder object to generate a linear function.
#[derive(Default)]
pub struct PiecewiseLinearFunctionBuilder {
largest_x: Option<ValueType>,
smallest_x: Option<ValueType>,
entries: Vec<BuildEntry>,
}
impl PiecewiseLinearFunctionBuilder {
#[allow(missing_docs)]
pub fn new() -> Self {
PiecewiseLinearFunctionBuilder::default()
}
fn create_entry(&mut self, y: ValueType, x: Option<ValueType>) {
let x = match x {
Some(x) if x.is_finite() => x,
_ => {
self.entries.push(BuildEntry { x: None, y });
return;
},
};
// Specified x value cannot regress, as per spec.
let x = match self.largest_x {
Some(largest_x) => x.max(largest_x),
None => x,
};
self.largest_x = Some(x);
// Whatever we see the earliest is the smallest value.
if self.smallest_x.is_none() {
self.smallest_x = Some(x);
}
self.entries.push(BuildEntry { x: Some(x), y });
}
/// Add a new entry into the piecewise linear function with specified y value.
/// If the start x value is given, that is where the x value will be. Otherwise,
/// the x value is calculated later. If the end x value is specified, a flat segment
/// is generated. If start x value is not specified but end x is, it is treated as
/// start x.
pub fn push(mut self, y: CSSFloat, x_start: Option<CSSFloat>, x_end: Option<CSSFloat>) -> Self {
self.create_entry(y, x_start);
if x_end.is_some() {
self.create_entry(y, x_end.map(|x| x));
}
self
}
/// Finish building the piecewise linear function by resolving all undefined x values,
/// then return the result.
pub fn build(mut self) -> PiecewiseLinearFunction {
if self.entries.is_empty() {
return PiecewiseLinearFunction::default();
}
if self.entries.len() == 1 {
// Don't bother resolving anything.
return PiecewiseLinearFunction {
entries: crate::OwnedSlice::from_slice(&[Entry {
x: 0.,
y: self.entries[0].y,
}]),
};
}
// Guaranteed at least two elements.
// Start and end elements guaranteed to have defined x value.
// Note(dshin): Spec asserts that start/end elements are supposed to have 0/1 assigned
// respectively if their x values are undefined at this time; however, the spec does
// not disallow negative/100%+ inputs, and inputs like `linear(0, 0.1 -10%, 0.9 110%, 1.0)`
// would break the assumption that the x values in the list increase monotonically.
// Otherwise, we still want 0/1 assigned to the start/end values regardless of
// adjacent x values (i.e. `linear(0, 0.1 10%, 0.9 90%, 1.0)` ==
// `linear(0 0%, 0.1 10%, 0.9 90%, 1.0)` != `linear(0 10%, 0.1 10%, 0.9 90%, 1.0 90%)`)
self.entries[0]
.x
.get_or_insert(self.smallest_x.filter(|x| x < &0.0).unwrap_or(0.0));
self.entries
.last_mut()
.unwrap()
.x
.get_or_insert(self.largest_x.filter(|x| x > &1.0).unwrap_or(1.0));
let mut result = Vec::with_capacity(self.entries.len());
result.push(Entry {
x: self.entries[0].x.unwrap(),
y: self.entries[0].y,
});
for (i, e) in self.entries.iter().enumerate().skip(1) {
if e.x.is_none() {
// Need to calculate x values by first finding an entry with the first
// defined x value (Guaranteed to exist as the list end has it defined).
continue;
}
// x is defined for this element.
let divisor = i - result.len() + 1;
// Any element(s) with undefined x to assign?
if divisor != 1 {
// Have at least one element in result at all times.
let start_x = result.last().unwrap().x;
let increment = (e.x.unwrap() - start_x) / divisor as ValueType;
// Grab every element with undefined x to this point, which starts at the end of the result
// array, and ending right before the current index. Then, assigned the evenly divided
// x values.
result.extend(
self.entries[result.len()..i]
.iter()
.enumerate()
.map(|(j, e)| {
debug_assert!(e.x.is_none(), "Expected an entry with x undefined!");
Entry {
x: increment * (j + 1) as ValueType + start_x,
y: e.y,
}
}),
);
}
result.push(Entry {
x: e.x.unwrap(),
y: e.y,
});
}
debug_assert_eq!(
result.len(),
self.entries.len(),
"Should've mapped one-to-one!"
);
PiecewiseLinearFunction {
entries: result.into(),
}
}
}
|