1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Implements parallel traversal over the DOM tree.
//!
//! This traversal is based on Rayon, and therefore its safety is largely
//! verified by the type system.
//!
//! The primary trickiness and fine print for the above relates to the
//! thread safety of the DOM nodes themselves. Accessing a DOM element
//! concurrently on multiple threads is actually mostly "safe", since all
//! the mutable state is protected by an AtomicRefCell, and so we'll
//! generally panic if something goes wrong. Still, we try to to enforce our
//! thread invariants at compile time whenever possible. As such, TNode and
//! TElement are not Send, so ordinary style system code cannot accidentally
//! share them with other threads. In the parallel traversal, we explicitly
//! invoke |unsafe { SendNode::new(n) }| to put nodes in containers that may
//! be sent to other threads. This occurs in only a handful of places and is
//! easy to grep for. At the time of this writing, there is no other unsafe
//! code in the parallel traversal.
#![deny(missing_docs)]
use context::TraversalStatistics;
use dom::{OpaqueNode, SendNode, TElement, TNode};
use rayon;
use scoped_tls::ScopedTLS;
use std::borrow::Borrow;
use traversal::{DomTraversal, PerLevelTraversalData, PreTraverseToken};
/// The chunk size used to split the parallel traversal nodes.
///
/// We send each `CHUNK_SIZE` nodes as a different work unit to the work queue.
pub const CHUNK_SIZE: usize = 64;
/// A parallel top down traversal, generic over `D`.
#[allow(unsafe_code)]
pub fn traverse_dom<E, D>(traversal: &D,
root: E,
known_root_dom_depth: Option<usize>,
token: PreTraverseToken,
queue: &rayon::ThreadPool)
where E: TElement,
D: DomTraversal<E>,
{
debug_assert!(traversal.is_parallel());
// Handle Gecko's eager initial styling. We don't currently support it
// in conjunction with bottom-up traversal. If we did, we'd need to put
// it on the context to make it available to the bottom-up phase.
let (nodes, depth) = if token.traverse_unstyled_children_only() {
debug_assert!(!D::needs_postorder_traversal());
let mut children = vec![];
for kid in root.as_node().children() {
if kid.as_element().map_or(false, |el| el.get_data().is_none()) {
children.push(unsafe { SendNode::new(kid) });
}
}
(children, known_root_dom_depth.map(|x| x + 1))
} else {
(vec![unsafe { SendNode::new(root.as_node()) }], known_root_dom_depth)
};
let traversal_data = PerLevelTraversalData {
current_dom_depth: depth,
};
let tls = ScopedTLS::<D::ThreadLocalContext>::new(queue);
let root = root.as_node().opaque();
queue.install(|| {
rayon::scope(|scope| {
traverse_nodes(nodes, root, traversal_data, scope, traversal, &tls);
});
});
// Dump statistics to stdout if requested.
if TraversalStatistics::should_dump() {
let slots = unsafe { tls.unsafe_get() };
let aggregate = slots.iter().fold(TraversalStatistics::default(), |acc, t| {
match *t.borrow() {
None => acc,
Some(ref cx) => &cx.borrow().statistics + &acc,
}
});
println!("{}", aggregate);
}
}
/// A parallel top-down DOM traversal.
#[inline(always)]
#[allow(unsafe_code)]
fn top_down_dom<'a, 'scope, E, D>(nodes: &'a [SendNode<E::ConcreteNode>],
root: OpaqueNode,
mut traversal_data: PerLevelTraversalData,
scope: &'a rayon::Scope<'scope>,
traversal: &'scope D,
tls: &'scope ScopedTLS<'scope, D::ThreadLocalContext>)
where E: TElement + 'scope,
D: DomTraversal<E>,
{
let mut discovered_child_nodes = vec![];
{
// Scope the borrow of the TLS so that the borrow is dropped before
// potentially traversing a child on this thread.
let mut tlc = tls.ensure(|| traversal.create_thread_local_context());
for n in nodes {
// Perform the appropriate traversal.
let node = **n;
let mut children_to_process = 0isize;
traversal.process_preorder(&mut traversal_data, &mut *tlc, node);
if let Some(el) = node.as_element() {
traversal.traverse_children(&mut *tlc, el, |_tlc, kid| {
children_to_process += 1;
discovered_child_nodes.push(unsafe { SendNode::new(kid) })
});
}
// Reset the count of children if we need to do a bottom-up traversal
// after the top up.
if D::needs_postorder_traversal() {
if children_to_process == 0 {
// If there were no more children, start walking back up.
bottom_up_dom(traversal, &mut *tlc, root, node)
} else {
// Otherwise record the number of children to process when the
// time comes.
node.as_element().unwrap().store_children_to_process(children_to_process);
}
}
}
}
if let Some(ref mut depth) = traversal_data.current_dom_depth {
*depth += 1;
}
traverse_nodes(discovered_child_nodes, root, traversal_data, scope, traversal, tls);
}
fn traverse_nodes<'a, 'scope, E, D>(nodes: Vec<SendNode<E::ConcreteNode>>, root: OpaqueNode,
traversal_data: PerLevelTraversalData,
scope: &'a rayon::Scope<'scope>,
traversal: &'scope D,
tls: &'scope ScopedTLS<'scope, D::ThreadLocalContext>)
where E: TElement + 'scope,
D: DomTraversal<E>,
{
if nodes.is_empty() {
return;
}
// Optimization: traverse directly and avoid a heap-allocating spawn() call if
// we're only pushing one work unit.
if nodes.len() <= CHUNK_SIZE {
let nodes = nodes.into_boxed_slice();
top_down_dom(&nodes, root, traversal_data, scope, traversal, tls);
return;
}
// General case.
for chunk in nodes.chunks(CHUNK_SIZE) {
let nodes = chunk.iter().cloned().collect::<Vec<_>>().into_boxed_slice();
let traversal_data = traversal_data.clone();
scope.spawn(move |scope| {
let nodes = nodes;
top_down_dom(&nodes, root, traversal_data, scope, traversal, tls)
})
}
}
/// Process current node and potentially traverse its ancestors.
///
/// If we are the last child that finished processing, recursively process
/// our parent. Else, stop. Also, stop at the root.
///
/// Thus, if we start with all the leaves of a tree, we end up traversing
/// the whole tree bottom-up because each parent will be processed exactly
/// once (by the last child that finishes processing).
///
/// The only communication between siblings is that they both
/// fetch-and-subtract the parent's children count.
fn bottom_up_dom<E, D>(traversal: &D,
thread_local: &mut D::ThreadLocalContext,
root: OpaqueNode,
mut node: E::ConcreteNode)
where E: TElement,
D: DomTraversal<E>,
{
loop {
// Perform the appropriate operation.
traversal.process_postorder(thread_local, node);
if node.opaque() == root {
break;
}
let parent = match node.parent_element() {
None => unreachable!("How can this happen after the break above?"),
Some(parent) => parent,
};
let remaining = parent.did_process_child();
if remaining != 0 {
// Get out of here and find another node to work on.
break
}
// We were the last child of our parent. Construct flows for our parent.
node = parent.as_node();
}
}
|