1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use dom::bindings::cell::DomRefCell;
use dom::bindings::codegen::Bindings::DOMMatrixBinding::{DOMMatrixInit, DOMMatrixMethods};
use dom::bindings::codegen::Bindings::DOMMatrixReadOnlyBinding::{DOMMatrixReadOnlyMethods, Wrap};
use dom::bindings::codegen::Bindings::DOMPointBinding::DOMPointInit;
use dom::bindings::error;
use dom::bindings::error::Fallible;
use dom::bindings::reflector::{reflect_dom_object, DomObject, Reflector};
use dom::bindings::root::DomRoot;
use dom::dommatrix::DOMMatrix;
use dom::dompoint::DOMPoint;
use dom::globalscope::GlobalScope;
use dom_struct::dom_struct;
use euclid::{Transform3D, Radians};
use std::cell::{Cell, Ref};
use std::f64;
#[dom_struct]
pub struct DOMMatrixReadOnly {
reflector_: Reflector,
matrix: DomRefCell<Transform3D<f64>>,
is2D: Cell<bool>,
}
impl DOMMatrixReadOnly {
#[allow(unrooted_must_root)]
pub fn new(global: &GlobalScope, is2D: bool, matrix: Transform3D<f64>) -> DomRoot<Self> {
let dommatrix = Self::new_inherited(is2D, matrix);
reflect_dom_object(Box::new(dommatrix), global, Wrap)
}
pub fn new_inherited(is2D: bool, matrix: Transform3D<f64>) -> Self {
DOMMatrixReadOnly {
reflector_: Reflector::new(),
matrix: DomRefCell::new(matrix),
is2D: Cell::new(is2D),
}
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly
pub fn Constructor(global: &GlobalScope) -> Fallible<DomRoot<Self>> {
Ok(Self::new(global, true, Transform3D::identity()))
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
pub fn Constructor_(global: &GlobalScope, entries: Vec<f64>) -> Fallible<DomRoot<Self>> {
entries_to_matrix(&entries[..])
.map(|(is2D, matrix)| {
Self::new(global, is2D, matrix)
})
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-frommatrix
pub fn FromMatrix(global: &GlobalScope, other: &DOMMatrixInit) -> Fallible<DomRoot<Self>> {
dommatrixinit_to_matrix(&other)
.map(|(is2D, matrix)| {
Self::new(global, is2D, matrix)
})
}
pub fn matrix(&self) -> Ref<Transform3D<f64>> {
self.matrix.borrow()
}
pub fn is_2d(&self) -> bool {
self.is2D.get()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11
pub fn set_m11(&self, value: f64) {
self.matrix.borrow_mut().m11 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12
pub fn set_m12(&self, value: f64) {
self.matrix.borrow_mut().m12 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13
pub fn set_m13(&self, value: f64) {
self.matrix.borrow_mut().m13 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14
pub fn set_m14(&self, value: f64) {
self.matrix.borrow_mut().m14 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21
pub fn set_m21(&self, value: f64) {
self.matrix.borrow_mut().m21 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22
pub fn set_m22(&self, value: f64) {
self.matrix.borrow_mut().m22 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23
pub fn set_m23(&self, value: f64) {
self.matrix.borrow_mut().m23 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24
pub fn set_m24(&self, value: f64) {
self.matrix.borrow_mut().m24 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31
pub fn set_m31(&self, value: f64) {
self.matrix.borrow_mut().m31 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32
pub fn set_m32(&self, value: f64) {
self.matrix.borrow_mut().m32 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33
pub fn set_m33(&self, value: f64) {
self.matrix.borrow_mut().m33 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34
pub fn set_m34(&self, value: f64) {
self.matrix.borrow_mut().m34 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41
pub fn set_m41(&self, value: f64) {
self.matrix.borrow_mut().m41 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42
pub fn set_m42(&self, value: f64) {
self.matrix.borrow_mut().m42 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43
pub fn set_m43(&self, value: f64) {
self.matrix.borrow_mut().m43 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44
pub fn set_m44(&self, value: f64) {
self.matrix.borrow_mut().m44 = value;
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-multiplyself
pub fn multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> {
// Step 1.
dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| {
// Step 2.
let mut matrix = self.matrix.borrow_mut();
*matrix = other_matrix.post_mul(&matrix);
// Step 3.
if !is2D {
self.is2D.set(false);
}
// Step 4 in DOMMatrix.MultiplySelf
})
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-premultiplyself
pub fn pre_multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> {
// Step 1.
dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| {
// Step 2.
let mut matrix = self.matrix.borrow_mut();
*matrix = other_matrix.pre_mul(&matrix);
// Step 3.
if !is2D {
self.is2D.set(false);
}
// Step 4 in DOMMatrix.PreMultiplySelf
})
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-translateself
pub fn translate_self(&self, tx: f64, ty: f64, tz: f64) {
// Step 1.
let translation = Transform3D::create_translation(tx, ty, tz);
let mut matrix = self.matrix.borrow_mut();
*matrix = translation.post_mul(&matrix);
// Step 2.
if tz != 0.0 {
self.is2D.set(false);
}
// Step 3 in DOMMatrix.TranslateSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scaleself
pub fn scale_self(&self, scaleX: f64, scaleY: Option<f64>, scaleZ: f64,
mut originX: f64, mut originY: f64, mut originZ: f64) {
// Step 1.
self.translate_self(originX, originY, originZ);
// Step 2.
let scaleY = scaleY.unwrap_or(scaleX);
// Step 3.
{
let scale3D = Transform3D::create_scale(scaleX, scaleY, scaleZ);
let mut matrix = self.matrix.borrow_mut();
*matrix = scale3D.post_mul(&matrix);
}
// Step 4.
originX = -originX;
originY = -originY;
originZ = -originZ;
// Step 5.
self.translate_self(originX, originY, originZ);
// Step 6.
if scaleZ != 1.0 || originZ != 0.0 {
self.is2D.set(false);
}
// Step 7 in DOMMatrix.ScaleSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scale3dself
pub fn scale_3d_self(&self, scale: f64, originX: f64, originY: f64, originZ: f64) {
// Step 1.
self.translate_self(originX, originY, originZ);
// Step 2.
{
let scale3D = Transform3D::create_scale(scale, scale, scale);
let mut matrix = self.matrix.borrow_mut();
*matrix = scale3D.post_mul(&matrix);
}
// Step 3.
self.translate_self(-originX, -originY, -originZ);
// Step 4.
if scale != 1.0 {
self.is2D.set(false);
}
// Step 5 in DOMMatrix.Scale3dSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateself
pub fn rotate_self(&self, mut rotX: f64, mut rotY: Option<f64>, mut rotZ: Option<f64>) {
// Step 1.
if rotY.is_none() && rotZ.is_none() {
rotZ = Some(rotX);
rotX = 0.0;
rotY = Some(0.0);
}
// Step 2.
let rotY = rotY.unwrap_or(0.0);
// Step 3.
let rotZ = rotZ.unwrap_or(0.0);
// Step 4.
if rotX != 0.0 || rotY != 0.0 {
self.is2D.set(false);
}
if rotZ != 0.0 {
// Step 5.
let rotation = Transform3D::create_rotation(0.0, 0.0, 1.0, Radians::new(rotZ.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
if rotY != 0.0 {
// Step 6.
let rotation = Transform3D::create_rotation(0.0, 1.0, 0.0, Radians::new(rotY.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
if rotX != 0.0 {
// Step 7.
let rotation = Transform3D::create_rotation(1.0, 0.0, 0.0, Radians::new(rotX.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
// Step 8 in DOMMatrix.RotateSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotatefromvectorself
pub fn rotate_from_vector_self(&self, x: f64, y: f64) {
// don't do anything when the rotation angle is zero or undefined
if y != 0.0 || x < 0.0 {
// Step 1.
let rotZ = Radians::new(f64::atan2(y, x));
let rotation = Transform3D::create_rotation(0.0, 0.0, 1.0, rotZ);
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
}
// Step 2 in DOMMatrix.RotateFromVectorSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateaxisangleself
pub fn rotate_axis_angle_self(&self, x: f64, y: f64, z: f64, angle: f64) {
// Step 1.
let (norm_x, norm_y, norm_z) = normalize_point(x, y, z);
let rotation = Transform3D::create_rotation(norm_x, norm_y, norm_z, Radians::new(angle.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = rotation.post_mul(&matrix);
// Step 2.
if x != 0.0 || y != 0.0 {
self.is2D.set(false);
}
// Step 3 in DOMMatrix.RotateAxisAngleSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewxself
pub fn skew_x_self(&self, sx: f64) {
// Step 1.
let skew = Transform3D::create_skew(Radians::new(sx.to_radians()), Radians::new(0.0));
let mut matrix = self.matrix.borrow_mut();
*matrix = skew.post_mul(&matrix);
// Step 2 in DOMMatrix.SkewXSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewyself
pub fn skew_y_self(&self, sy: f64) {
// Step 1.
let skew = Transform3D::create_skew(Radians::new(0.0), Radians::new(sy.to_radians()));
let mut matrix = self.matrix.borrow_mut();
*matrix = skew.post_mul(&matrix);
// Step 2 in DOMMatrix.SkewYSelf
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrix-invertself
pub fn invert_self(&self) {
let mut matrix = self.matrix.borrow_mut();
// Step 1.
*matrix = matrix.inverse().unwrap_or_else(|| {
// Step 2.
self.is2D.set(false);
Transform3D::row_major(f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN,
f64::NAN, f64::NAN, f64::NAN, f64::NAN)
})
// Step 3 in DOMMatrix.InvertSelf
}
}
impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly {
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11
fn M11(&self) -> f64 {
self.matrix.borrow().m11
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12
fn M12(&self) -> f64 {
self.matrix.borrow().m12
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13
fn M13(&self) -> f64 {
self.matrix.borrow().m13
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14
fn M14(&self) -> f64 {
self.matrix.borrow().m14
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21
fn M21(&self) -> f64 {
self.matrix.borrow().m21
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22
fn M22(&self) -> f64 {
self.matrix.borrow().m22
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23
fn M23(&self) -> f64 {
self.matrix.borrow().m23
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24
fn M24(&self) -> f64 {
self.matrix.borrow().m24
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31
fn M31(&self) -> f64 {
self.matrix.borrow().m31
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32
fn M32(&self) -> f64 {
self.matrix.borrow().m32
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33
fn M33(&self) -> f64 {
self.matrix.borrow().m33
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34
fn M34(&self) -> f64 {
self.matrix.borrow().m34
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41
fn M41(&self) -> f64 {
self.matrix.borrow().m41
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42
fn M42(&self) -> f64 {
self.matrix.borrow().m42
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43
fn M43(&self) -> f64 {
self.matrix.borrow().m43
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44
fn M44(&self) -> f64 {
self.matrix.borrow().m44
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-a
fn A(&self) -> f64 {
self.M11()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-b
fn B(&self) -> f64 {
self.M12()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-c
fn C(&self) -> f64 {
self.M21()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-d
fn D(&self) -> f64 {
self.M22()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-e
fn E(&self) -> f64 {
self.M41()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-f
fn F(&self) -> f64 {
self.M42()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-is2d
fn Is2D(&self) -> bool {
self.is2D.get()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-isidentity
fn IsIdentity(&self) -> bool {
let matrix = self.matrix.borrow();
matrix.m12 == 0.0 && matrix.m13 == 0.0 && matrix.m14 == 0.0 && matrix.m21 == 0.0 &&
matrix.m23 == 0.0 && matrix.m24 == 0.0 && matrix.m31 == 0.0 && matrix.m32 == 0.0 &&
matrix.m34 == 0.0 && matrix.m41 == 0.0 && matrix.m42 == 0.0 && matrix.m43 == 0.0 &&
matrix.m11 == 1.0 && matrix.m22 == 1.0 && matrix.m33 == 1.0 && matrix.m44 == 1.0
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-translate
fn Translate(&self, tx: f64, ty: f64, tz: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).TranslateSelf(tx, ty, tz)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale
fn Scale(&self, scaleX: f64, scaleY: Option<f64>, scaleZ: f64,
originX: f64, originY: f64, originZ: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self)
.ScaleSelf(scaleX, scaleY, scaleZ, originX, originY, originZ)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale3d
fn Scale3d(&self, scale: f64, originX: f64, originY: f64, originZ: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self)
.Scale3dSelf(scale, originX, originY, originZ)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotate
fn Rotate(&self, rotX: f64, rotY: Option<f64>, rotZ: Option<f64>) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).RotateSelf(rotX, rotY, rotZ)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotatefromvector
fn RotateFromVector(&self, x: f64, y: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).RotateFromVectorSelf(x, y)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotateaxisangle
fn RotateAxisAngle(&self, x: f64, y: f64, z: f64, angle: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).RotateAxisAngleSelf(x, y, z, angle)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewx
fn SkewX(&self, sx: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).SkewXSelf(sx)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewy
fn SkewY(&self, sy: f64) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).SkewYSelf(sy)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-multiply
fn Multiply(&self, other: &DOMMatrixInit) -> Fallible<DomRoot<DOMMatrix>> {
DOMMatrix::from_readonly(&self.global(), self).MultiplySelf(&other)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipx
fn FlipX(&self) -> DomRoot<DOMMatrix> {
let is2D = self.is2D.get();
let flip = Transform3D::row_major(-1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
let matrix = flip.post_mul(&self.matrix.borrow());
DOMMatrix::new(&self.global(), is2D, matrix)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipy
fn FlipY(&self) -> DomRoot<DOMMatrix> {
let is2D = self.is2D.get();
let flip = Transform3D::row_major(1.0, 0.0, 0.0, 0.0,
0.0, -1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
let matrix = flip.post_mul(&self.matrix.borrow());
DOMMatrix::new(&self.global(), is2D, matrix)
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-inverse
fn Inverse(&self) -> DomRoot<DOMMatrix> {
DOMMatrix::from_readonly(&self.global(), self).InvertSelf()
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-transformpoint
fn TransformPoint(&self, point: &DOMPointInit) -> DomRoot<DOMPoint> {
// Euclid always normalizes the homogeneous coordinate which is usually the right
// thing but may (?) not be compliant with the CSS matrix spec (or at least is
// probably not the behavior web authors will expect even if it is mathematically
// correct in the context of geometry computations).
// Since this is the only place where this is needed, better implement it here
// than in euclid (which does not have a notion of 4d points).
let mat = self.matrix.borrow();
let x = point.x * mat.m11 + point.y * mat.m21 + point.z * mat.m31 + point.w * mat.m41;
let y = point.x * mat.m12 + point.y * mat.m22 + point.z * mat.m32 + point.w * mat.m42;
let z = point.x * mat.m13 + point.y * mat.m23 + point.z * mat.m33 + point.w * mat.m43;
let w = point.x * mat.m14 + point.y * mat.m24 + point.z * mat.m34 + point.w * mat.m44;
DOMPoint::new(&self.global(), x, y, z, w)
}
}
// https://drafts.fxtf.org/geometry-1/#create-a-2d-matrix
fn create_2d_matrix(entries: &[f64]) -> Transform3D<f64> {
Transform3D::row_major(entries[0], entries[1], 0.0, 0.0,
entries[2], entries[3], 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
entries[4], entries[5], 0.0, 1.0)
}
// https://drafts.fxtf.org/geometry-1/#create-a-3d-matrix
fn create_3d_matrix(entries: &[f64]) -> Transform3D<f64> {
Transform3D::row_major(entries[0], entries[1], entries[2], entries[3],
entries[4], entries[5], entries[6], entries[7],
entries[8], entries[9], entries[10], entries[11],
entries[12], entries[13], entries[14], entries[15])
}
// https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence
pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Transform3D<f64>)> {
if entries.len() == 6 {
Ok((true, create_2d_matrix(&entries)))
} else if entries.len() == 16 {
Ok((false, create_3d_matrix(&entries)))
} else {
let err_msg = format!("Expected 6 or 16 entries, but found {}.", entries.len());
Err(error::Error::Type(err_msg.to_owned()))
}
}
// https://drafts.fxtf.org/geometry-1/#validate-and-fixup
pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Transform3D<f64>)> {
// Step 1.
if dict.a.is_some() && dict.m11.is_some() && dict.a.unwrap() != dict.m11.unwrap() ||
dict.b.is_some() && dict.m12.is_some() && dict.b.unwrap() != dict.m12.unwrap() ||
dict.c.is_some() && dict.m21.is_some() && dict.c.unwrap() != dict.m21.unwrap() ||
dict.d.is_some() && dict.m22.is_some() && dict.d.unwrap() != dict.m22.unwrap() ||
dict.e.is_some() && dict.m41.is_some() && dict.e.unwrap() != dict.m41.unwrap() ||
dict.f.is_some() && dict.m42.is_some() && dict.f.unwrap() != dict.m42.unwrap() ||
dict.is2D.is_some() && dict.is2D.unwrap() &&
(dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 || dict.m23 != 0.0 ||
dict.m43 != 0.0 || dict.m14 != 0.0 || dict.m24 != 0.0 || dict.m34 != 0.0 ||
dict.m33 != 1.0 || dict.m44 != 1.0) {
Err(error::Error::Type("Invalid matrix initializer.".to_owned()))
} else {
let mut is2D = dict.is2D;
// Step 2.
let m11 = dict.m11.unwrap_or(dict.a.unwrap_or(1.0));
// Step 3.
let m12 = dict.m12.unwrap_or(dict.b.unwrap_or(0.0));
// Step 4.
let m21 = dict.m21.unwrap_or(dict.c.unwrap_or(0.0));
// Step 5.
let m22 = dict.m22.unwrap_or(dict.d.unwrap_or(1.0));
// Step 6.
let m41 = dict.m41.unwrap_or(dict.e.unwrap_or(0.0));
// Step 7.
let m42 = dict.m42.unwrap_or(dict.f.unwrap_or(0.0));
// Step 8.
if is2D.is_none() &&
(dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 ||
dict.m23 != 0.0 || dict.m43 != 0.0 || dict.m14 != 0.0 ||
dict.m24 != 0.0 || dict.m34 != 0.0 ||
dict.m33 != 1.0 || dict.m44 != 1.0) {
is2D = Some(false);
}
// Step 9.
if is2D.is_none() {
is2D = Some(true);
}
let matrix = Transform3D::row_major(m11, m12, dict.m13, dict.m14,
m21, m22, dict.m23, dict.m24,
dict.m31, dict.m32, dict.m33, dict.m34,
m41, m42, dict.m43, dict.m44);
Ok((is2D.unwrap(), matrix))
}
}
#[inline]
fn normalize_point(x: f64, y: f64, z: f64) -> (f64, f64, f64) {
let len = (x * x + y * y + z * z).sqrt();
if len == 0.0 {
(0.0, 0.0, 0.0)
} else {
(x / len, y / len, z / len)
}
}
|