aboutsummaryrefslogtreecommitdiffstats
path: root/components/script/dom/bindings/js.rs
blob: dfe1acca376f2d94fb247f9e2a099bfa77c267d7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Smart pointers for the JS-managed DOM objects.
//!
//! The DOM is made up of DOM objects whose lifetime is entirely controlled by
//! the whims of the SpiderMonkey garbage collector. The types in this module
//! are designed to ensure that any interactions with said Rust types only
//! occur on values that will remain alive the entire time.
//!
//! Here is a brief overview of the important types:
//!
//! - `Root<T>`: a stack-based reference to a rooted DOM object.
//! - `JS<T>`: a reference to a DOM object that can automatically be traced by
//!   the GC when encountered as a field of a Rust structure.
//!
//! `JS<T>` does not allow access to their inner value without explicitly
//! creating a stack-based root via the `root` method. This returns a `Root<T>`,
//! which causes the JS-owned value to be uncollectable for the duration of the
//! `Root` object's lifetime. A reference to the object can then be obtained
//! from the `Root` object. These references are not allowed to outlive their
//! originating `Root<T>`.
//!

use core::nonzero::NonZero;
use dom::bindings::conversions::DerivedFrom;
use dom::bindings::inheritance::Castable;
use dom::bindings::reflector::{Reflectable, Reflector};
use dom::bindings::trace::JSTraceable;
use dom::bindings::trace::trace_reflector;
use dom::node::Node;
use js::jsapi::{Heap, JSObject, JSTracer};
use js::jsval::JSVal;
use layout_interface::TrustedNodeAddress;
use script_task::STACK_ROOTS;
use std::cell::UnsafeCell;
use std::default::Default;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::ptr;
use util::mem::HeapSizeOf;
use util::task_state;

/// A traced reference to a DOM object
///
/// This type is critical to making garbage collection work with the DOM,
/// but it is very dangerous; if garbage collection happens with a `JS<T>`
/// on the stack, the `JS<T>` can point to freed memory.
///
/// This should only be used as a field in other DOM objects.
#[must_root]
pub struct JS<T> {
    ptr: NonZero<*const T>,
}

// JS<T> is similar to Rc<T>, in that it's not always clear how to avoid double-counting.
// For now, we choose not to follow any such pointers.
impl<T> HeapSizeOf for JS<T> {
    fn heap_size_of_children(&self) -> usize {
        0
    }
}

impl<T> JS<T> {
    /// Returns `LayoutJS<T>` containing the same pointer.
    pub unsafe fn to_layout(&self) -> LayoutJS<T> {
        debug_assert!(task_state::get().is_layout());
        LayoutJS {
            ptr: self.ptr.clone(),
        }
    }
}

impl<T: Reflectable> JS<T> {
    /// Create a JS<T> from a Root<T>
    /// XXX Not a great API. Should be a call on Root<T> instead
    #[allow(unrooted_must_root)]
    pub fn from_rooted(root: &Root<T>) -> JS<T> {
        debug_assert!(task_state::get().is_script());
        JS {
            ptr: unsafe { NonZero::new(&**root) },
        }
    }
    /// Create a JS<T> from a &T
    #[allow(unrooted_must_root)]
    pub fn from_ref(obj: &T) -> JS<T> {
        debug_assert!(task_state::get().is_script());
        JS {
            ptr: unsafe { NonZero::new(&*obj) },
        }
    }
}

impl<T: Reflectable> Deref for JS<T> {
    type Target = T;

    fn deref(&self) -> &T {
        debug_assert!(task_state::get().is_script());
        // We can only have &JS<T> from a rooted thing, so it's safe to deref
        // it to &T.
        unsafe { &**self.ptr }
    }
}

impl<T: Reflectable> JSTraceable for JS<T> {
    fn trace(&self, trc: *mut JSTracer) {
        trace_reflector(trc, "", unsafe { (**self.ptr).reflector() });
    }
}

/// An unrooted reference to a DOM object for use in layout. `Layout*Helpers`
/// traits must be implemented on this.
#[allow_unrooted_interior]
pub struct LayoutJS<T> {
    ptr: NonZero<*const T>,
}

impl<T: Castable> LayoutJS<T> {
    /// Cast a DOM object root upwards to one of the interfaces it derives from.
    pub fn upcast<U>(&self) -> LayoutJS<U>
        where U: Castable,
              T: DerivedFrom<U>
    {
        debug_assert!(task_state::get().is_layout());
        unsafe { mem::transmute_copy(self) }
    }

    /// Cast a DOM object downwards to one of the interfaces it might implement.
    pub fn downcast<U>(&self) -> Option<LayoutJS<U>>
        where U: DerivedFrom<T>
    {
        debug_assert!(task_state::get().is_layout());
        unsafe {
            if (*self.unsafe_get()).is::<U>() {
                Some(mem::transmute_copy(self))
            } else {
                None
            }
        }
    }
}

impl<T: Reflectable> LayoutJS<T> {
    /// Get the reflector.
    pub unsafe fn get_jsobject(&self) -> *mut JSObject {
        debug_assert!(task_state::get().is_layout());
        (**self.ptr).reflector().get_jsobject().get()
    }
}

impl<T> Copy for LayoutJS<T> {}

impl<T> PartialEq for JS<T> {
    fn eq(&self, other: &JS<T>) -> bool {
        self.ptr == other.ptr
    }
}

impl<T> Eq for JS<T> {}

impl<T> PartialEq for LayoutJS<T> {
    fn eq(&self, other: &LayoutJS<T>) -> bool {
        self.ptr == other.ptr
    }
}

impl<T> Eq for LayoutJS<T> {}

impl<T> Hash for JS<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.ptr.hash(state)
    }
}

impl<T> Hash for LayoutJS<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.ptr.hash(state)
    }
}

impl <T> Clone for JS<T> {
    #[inline]
    #[allow(unrooted_must_root)]
    fn clone(&self) -> JS<T> {
        debug_assert!(task_state::get().is_script());
        JS {
            ptr: self.ptr.clone(),
        }
    }
}

impl <T> Clone for LayoutJS<T> {
    #[inline]
    fn clone(&self) -> LayoutJS<T> {
        debug_assert!(task_state::get().is_layout());
        LayoutJS {
            ptr: self.ptr.clone(),
        }
    }
}

impl LayoutJS<Node> {
    /// Create a new JS-owned value wrapped from an address known to be a
    /// `Node` pointer.
    pub unsafe fn from_trusted_node_address(inner: TrustedNodeAddress) -> LayoutJS<Node> {
        debug_assert!(task_state::get().is_layout());
        let TrustedNodeAddress(addr) = inner;
        LayoutJS {
            ptr: NonZero::new(addr as *const Node),
        }
    }
}


/// A trait to be implemented for JS-managed types that can be stored in
/// mutable member fields.
///
/// Do not implement this trait yourself.
pub trait HeapGCValue: JSTraceable {
}

impl HeapGCValue for Heap<JSVal> {
}

impl<T: Reflectable> HeapGCValue for JS<T> {
}

/// A holder that provides interior mutability for GC-managed JSVals.
///
/// Must be used in place of traditional interior mutability to ensure proper
/// GC barriers are enforced.
#[must_root]
#[derive(JSTraceable)]
pub struct MutHeapJSVal {
    val: UnsafeCell<Heap<JSVal>>,
}

impl MutHeapJSVal {
    /// Create a new `MutHeapJSVal`.
    pub fn new() -> MutHeapJSVal {
        debug_assert!(task_state::get().is_script());
        MutHeapJSVal {
            val: UnsafeCell::new(Heap::default()),
        }
    }

    /// Set this `MutHeapJSVal` to the given value, calling write barriers as
    /// appropriate.
    pub fn set(&self, val: JSVal) {
        debug_assert!(task_state::get().is_script());
        unsafe {
            let cell = self.val.get();
            (*cell).set(val);
        }
    }

    /// Get the value in this `MutHeapJSVal`, calling read barriers as appropriate.
    pub fn get(&self) -> JSVal {
        debug_assert!(task_state::get().is_script());
        unsafe { (*self.val.get()).get() }
    }
}


/// A holder that provides interior mutability for GC-managed values such as
/// `JS<T>`.  Essentially a `Cell<JS<T>>`, but safer.
///
/// This should only be used as a field in other DOM objects; see warning
/// on `JS<T>`.
#[must_root]
#[derive(JSTraceable)]
pub struct MutHeap<T: HeapGCValue> {
    val: UnsafeCell<T>,
}

impl<T: Reflectable> MutHeap<JS<T>> {
    /// Create a new `MutHeap`.
    pub fn new(initial: &T) -> MutHeap<JS<T>> {
        debug_assert!(task_state::get().is_script());
        MutHeap {
            val: UnsafeCell::new(JS::from_ref(initial)),
        }
    }

    /// Set this `MutHeap` to the given value.
    pub fn set(&self, val: &T) {
        debug_assert!(task_state::get().is_script());
        unsafe {
            *self.val.get() = JS::from_ref(val);
        }
    }

    /// Get the value in this `MutHeap`.
    pub fn get(&self) -> Root<T> {
        debug_assert!(task_state::get().is_script());
        unsafe {
            Root::from_ref(&*ptr::read(self.val.get()))
        }
    }
}

impl<T: HeapGCValue> HeapSizeOf for MutHeap<T> {
    fn heap_size_of_children(&self) -> usize {
        // See comment on HeapSizeOf for JS<T>.
        0
    }
}

impl<T: Reflectable> PartialEq for MutHeap<JS<T>> {
   fn eq(&self, other: &Self) -> bool {
        unsafe {
            *self.val.get() == *other.val.get()
        }
    }
}

impl<T: Reflectable + PartialEq> PartialEq<T> for MutHeap<JS<T>> {
    fn eq(&self, other: &T) -> bool {
        unsafe {
            **self.val.get() == *other
        }
    }
}

/// A holder that provides interior mutability for GC-managed values such as
/// `JS<T>`, with nullability represented by an enclosing Option wrapper.
/// Essentially a `Cell<Option<JS<T>>>`, but safer.
///
/// This should only be used as a field in other DOM objects; see warning
/// on `JS<T>`.
#[must_root]
#[derive(JSTraceable)]
pub struct MutNullableHeap<T: HeapGCValue> {
    ptr: UnsafeCell<Option<T>>,
}

impl<T: Reflectable> MutNullableHeap<JS<T>> {
    /// Create a new `MutNullableHeap`.
    pub fn new(initial: Option<&T>) -> MutNullableHeap<JS<T>> {
        debug_assert!(task_state::get().is_script());
        MutNullableHeap {
            ptr: UnsafeCell::new(initial.map(JS::from_ref)),
        }
    }

    /// Retrieve a copy of the current inner value. If it is `None`, it is
    /// initialized with the result of `cb` first.
    pub fn or_init<F>(&self, cb: F) -> Root<T>
        where F: FnOnce() -> Root<T>
    {
        debug_assert!(task_state::get().is_script());
        match self.get() {
            Some(inner) => inner,
            None => {
                let inner = cb();
                self.set(Some(&inner));
                inner
            },
        }
    }

    /// Retrieve a copy of the inner optional `JS<T>` as `LayoutJS<T>`.
    /// For use by layout, which can't use safe types like Temporary.
    #[allow(unrooted_must_root)]
    pub unsafe fn get_inner_as_layout(&self) -> Option<LayoutJS<T>> {
        debug_assert!(task_state::get().is_layout());
        ptr::read(self.ptr.get()).map(|js| js.to_layout())
    }

    /// Get a rooted value out of this object
    #[allow(unrooted_must_root)]
    pub fn get(&self) -> Option<Root<T>> {
        debug_assert!(task_state::get().is_script());
        unsafe {
            ptr::read(self.ptr.get()).map(|o| Root::from_ref(&*o))
        }
    }

    /// Set this `MutNullableHeap` to the given value.
    pub fn set(&self, val: Option<&T>) {
        debug_assert!(task_state::get().is_script());
        unsafe {
            *self.ptr.get() = val.map(|p| JS::from_ref(p));
        }
    }

}

impl<T: Reflectable> PartialEq for MutNullableHeap<JS<T>> {
    fn eq(&self, other: &Self) -> bool {
        unsafe {
            *self.ptr.get() == *other.ptr.get()
        }
    }
}

impl<'a, T: Reflectable> PartialEq<Option<&'a T>> for MutNullableHeap<JS<T>> {
    fn eq(&self, other: &Option<&T>) -> bool {
        unsafe {
            *self.ptr.get() == other.map(JS::from_ref)
        }
    }
}

impl<T: HeapGCValue> Default for MutNullableHeap<T> {
    #[allow(unrooted_must_root)]
    fn default() -> MutNullableHeap<T> {
        debug_assert!(task_state::get().is_script());
        MutNullableHeap {
            ptr: UnsafeCell::new(None),
        }
    }
}

impl<T: HeapGCValue> HeapSizeOf for MutNullableHeap<T> {
    fn heap_size_of_children(&self) -> usize {
        // See comment on HeapSizeOf for JS<T>.
        0
    }
}

impl<T: Reflectable> LayoutJS<T> {
    /// Returns an unsafe pointer to the interior of this JS object. This is
    /// the only method that be safely accessed from layout. (The fact that
    /// this is unsafe is what necessitates the layout wrappers.)
    pub unsafe fn unsafe_get(&self) -> *const T {
        debug_assert!(task_state::get().is_layout());
        *self.ptr
    }
}

/// Get an `Option<JSRef<T>>` out of an `Option<Root<T>>`
pub trait RootedReference<T> {
    /// Obtain a safe optional reference to the wrapped JS owned-value that
    /// cannot outlive the lifetime of this root.
    fn r(&self) -> Option<&T>;
}

impl<T: Reflectable> RootedReference<T> for Option<Root<T>> {
    fn r(&self) -> Option<&T> {
        self.as_ref().map(|root| root.r())
    }
}

/// Get an `Option<Option<&T>>` out of an `Option<Option<Root<T>>>`
pub trait OptionalRootedReference<T> {
    /// Obtain a safe optional optional reference to the wrapped JS owned-value
    /// that cannot outlive the lifetime of this root.
    fn r(&self) -> Option<Option<&T>>;
}

impl<T: Reflectable> OptionalRootedReference<T> for Option<Option<Root<T>>> {
    fn r(&self) -> Option<Option<&T>> {
        self.as_ref().map(|inner| inner.r())
    }
}

/// A rooting mechanism for reflectors on the stack.
/// LIFO is not required.
///
/// See also [*Exact Stack Rooting - Storing a GCPointer on the CStack*]
/// (https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_Rooting).
pub struct RootCollection {
    roots: UnsafeCell<Vec<*const Reflector>>,
}

/// A pointer to a RootCollection, for use in global variables.
pub struct RootCollectionPtr(pub *const RootCollection);

impl Copy for RootCollectionPtr {}
impl Clone for RootCollectionPtr {
    fn clone(&self) -> RootCollectionPtr {
        *self
    }
}

impl RootCollection {
    /// Create an empty collection of roots
    pub fn new() -> RootCollection {
        debug_assert!(task_state::get().is_script());
        RootCollection {
            roots: UnsafeCell::new(vec![]),
        }
    }

    /// Start tracking a stack-based root
    fn root(&self, untracked_reflector: *const Reflector) {
        debug_assert!(task_state::get().is_script());
        unsafe {
            let mut roots = &mut *self.roots.get();
            roots.push(untracked_reflector);
            assert!(!(*untracked_reflector).get_jsobject().is_null())
        }
    }

    /// Stop tracking a stack-based root, asserting if the reflector isn't found
    fn unroot<T: Reflectable>(&self, rooted: &Root<T>) {
        debug_assert!(task_state::get().is_script());
        unsafe {
            let mut roots = &mut *self.roots.get();
            let old_reflector = &*rooted.reflector();
            match roots.iter().rposition(|r| *r == old_reflector) {
                Some(idx) => {
                    roots.remove(idx);
                },
                None => panic!("Can't remove a root that was never rooted!"),
            }
        }
    }
}

/// SM Callback that traces the rooted reflectors
pub unsafe fn trace_roots(tracer: *mut JSTracer) {
    STACK_ROOTS.with(|ref collection| {
        let RootCollectionPtr(collection) = collection.get().unwrap();
        let collection = &*(*collection).roots.get();
        for root in collection {
            trace_reflector(tracer, "reflector", &**root);
        }
    });
}

/// A rooted reference to a DOM object.
///
/// The JS value is pinned for the duration of this object's lifetime; roots
/// are additive, so this object's destruction will not invalidate other roots
/// for the same JS value. `Root`s cannot outlive the associated
/// `RootCollection` object.
#[allow_unrooted_interior]
pub struct Root<T: Reflectable> {
    /// Reference to rooted value that must not outlive this container
    ptr: NonZero<*const T>,
    /// List that ensures correct dynamic root ordering
    root_list: *const RootCollection,
}

impl<T: Castable> Root<T> {
    /// Cast a DOM object root upwards to one of the interfaces it derives from.
    pub fn upcast<U>(root: Root<T>) -> Root<U>
        where U: Castable,
              T: DerivedFrom<U>
    {
        unsafe { mem::transmute(root) }
    }

    /// Cast a DOM object root downwards to one of the interfaces it might implement.
    pub fn downcast<U>(root: Root<T>) -> Option<Root<U>>
        where U: DerivedFrom<T>
    {
        if root.is::<U>() {
            Some(unsafe { mem::transmute(root) })
        } else {
            None
        }
    }
}

impl<T: Reflectable> Root<T> {
    /// Create a new stack-bounded root for the provided JS-owned value.
    /// It cannot not outlive its associated `RootCollection`, and it gives
    /// out references which cannot outlive this new `Root`.
    pub fn new(unrooted: NonZero<*const T>) -> Root<T> {
        debug_assert!(task_state::get().is_script());
        STACK_ROOTS.with(|ref collection| {
            let RootCollectionPtr(collection) = collection.get().unwrap();
            unsafe { (*collection).root(&*(**unrooted).reflector()) }
            Root {
                ptr: unrooted,
                root_list: collection,
            }
        })
    }

    /// Generate a new root from a reference
    pub fn from_ref(unrooted: &T) -> Root<T> {
        Root::new(unsafe { NonZero::new(&*unrooted) })
    }

    /// Obtain a safe reference to the wrapped JS owned-value that cannot
    /// outlive the lifetime of this root.
    pub fn r(&self) -> &T {
        &**self
    }
}

impl<T: Reflectable> Deref for Root<T> {
    type Target = T;
    fn deref(&self) -> &T {
        debug_assert!(task_state::get().is_script());
        unsafe { &**self.ptr.deref() }
    }
}

impl<T: Reflectable> PartialEq for Root<T> {
    fn eq(&self, other: &Root<T>) -> bool {
        self.ptr == other.ptr
    }
}

impl<T: Reflectable> Drop for Root<T> {
    fn drop(&mut self) {
        unsafe {
            (*self.root_list).unroot(self);
        }
    }
}