aboutsummaryrefslogtreecommitdiffstats
path: root/components/util/deque/mod.rs
blob: 1eb3f744c95bbe3229ade82ac7b5ec5c49003074 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A (mostly) lock-free concurrent work-stealing deque
//!
//! This module contains an implementation of the Chase-Lev work stealing deque
//! described in "Dynamic Circular Work-Stealing Deque". The implementation is
//! heavily based on the pseudocode found in the paper.
//!
//! This implementation does not want to have the restriction of a garbage
//! collector for reclamation of buffers, and instead it uses a shared pool of
//! buffers. This shared pool is required for correctness in this
//! implementation.
//!
//! The only lock-synchronized portions of this deque are the buffer allocation
//! and deallocation portions. Otherwise all operations are lock-free.
//!
//! # Example
//!
//!     use util::deque::BufferPool;
//!
//!     let mut pool = BufferPool::new();
//!     let (mut worker, mut stealer) = pool.deque();
//!
//!     // Only the worker may push/pop
//!     worker.push(1i);
//!     worker.pop();
//!
//!     // Stealers take data from the other end of the deque
//!     worker.push(1i);
//!     stealer.steal();
//!
//!     // Stealers can be cloned to have many stealers stealing in parallel
//!     worker.push(1i);
//!     let mut stealer2 = stealer.clone();
//!     stealer2.steal();

// NB: the "buffer pool" strategy is not done for speed, but rather for
//     correctness. For more info, see the comment on `swap_buffer`

// FIXME: all atomic operations in this module use a SeqCst ordering. That is
//      probably overkill

pub use self::Stolen::{Empty, Abort, Data};

use alloc::arc::Arc;
use alloc::heap::{allocate, deallocate};
use std::marker;
use std::mem::{forget, min_align_of, size_of, transmute};
use std::ptr;

use std::sync::Mutex;
use std::sync::atomic::{AtomicIsize, AtomicPtr};
use std::sync::atomic::Ordering::SeqCst;

// Once the queue is less than 1/K full, then it will be downsized. Note that
// the deque requires that this number be less than 2.
static K: isize = 4;

// Minimum number of bits that a buffer size should be. No buffer will resize to
// under this value, and all deques will initially contain a buffer of this
// size.
//
// The size in question is 1 << MIN_BITS
static MIN_BITS: usize = 7;

struct Deque<T> {
    bottom: AtomicIsize,
    top: AtomicIsize,
    array: AtomicPtr<Buffer<T>>,
    pool: BufferPool<T>,
}

unsafe impl<T> Send for Deque<T> {}

/// Worker half of the work-stealing deque. This worker has exclusive access to
/// one side of the deque, and uses `push` and `pop` method to manipulate it.
///
/// There may only be one worker per deque.
pub struct Worker<T> {
    deque: Arc<Deque<T>>,
}

impl<T> !marker::Sync for Worker<T> {}

/// The stealing half of the work-stealing deque. Stealers have access to the
/// opposite end of the deque from the worker, and they only have access to the
/// `steal` method.
pub struct Stealer<T> {
    deque: Arc<Deque<T>>,
}

impl<T> !marker::Sync for Stealer<T> {}

/// When stealing some data, this is an enumeration of the possible outcomes.
#[derive(PartialEq, Debug)]
pub enum Stolen<T> {
    /// The deque was empty at the time of stealing
    Empty,
    /// The stealer lost the race for stealing data, and a retry may return more
    /// data.
    Abort,
    /// The stealer has successfully stolen some data.
    Data(T),
}

/// The allocation pool for buffers used by work-stealing deques. Right now this
/// structure is used for reclamation of memory after it is no longer in use by
/// deques.
///
/// This data structure is protected by a mutex, but it is rarely used. Deques
/// will only use this structure when allocating a new buffer or deallocating a
/// previous one.
pub struct BufferPool<T> {
    // FIXME: This entire file was copied from std::sync::deque before it was removed,
    // I converted `Exclusive` to `Mutex` here, but that might not be ideal
    pool: Arc<Mutex<Vec<Box<Buffer<T>>>>>,
}

/// An internal buffer used by the chase-lev deque. This structure is actually
/// implemented as a circular buffer, and is used as the intermediate storage of
/// the data in the deque.
///
/// This type is implemented with *T instead of Vec<T> for two reasons:
///
///   1. There is nothing safe about using this buffer. This easily allows the
///      same value to be read twice in to rust, and there is nothing to
///      prevent this. The usage by the deque must ensure that one of the
///      values is forgotten. Furthermore, we only ever want to manually run
///      destructors for values in this buffer (on drop) because the bounds
///      are defined by the deque it's owned by.
///
///   2. We can certainly avoid bounds checks using *T instead of Vec<T>, although
///      LLVM is probably pretty good at doing this already.
struct Buffer<T> {
    storage: *const T,
    log_size: usize,
}

unsafe impl<T: 'static> Send for Buffer<T> { }

impl<T: Send + 'static> BufferPool<T> {
    /// Allocates a new buffer pool which in turn can be used to allocate new
    /// deques.
    pub fn new() -> BufferPool<T> {
        BufferPool { pool: Arc::new(Mutex::new(Vec::new())) }
    }

    /// Allocates a new work-stealing deque which will send/receiving memory to
    /// and from this buffer pool.
    pub fn deque(&self) -> (Worker<T>, Stealer<T>) {
        let a = Arc::new(Deque::new(self.clone()));
        let b = a.clone();
        (Worker { deque: a }, Stealer { deque: b })
    }

    fn alloc(&mut self, bits: usize) -> Box<Buffer<T>> {
        unsafe {
            let mut pool = self.pool.lock().unwrap();
            match pool.iter().position(|x| x.size() >= (1 << bits)) {
                Some(i) => pool.remove(i),
                None => box Buffer::new(bits)
            }
        }
    }

    fn free(&self, buf: Box<Buffer<T>>) {
        let mut pool = self.pool.lock().unwrap();
        match pool.iter().position(|v| v.size() > buf.size()) {
            Some(i) => pool.insert(i, buf),
            None => pool.push(buf),
        }
    }
}

impl<T: Send> Clone for BufferPool<T> {
    fn clone(&self) -> BufferPool<T> { BufferPool { pool: self.pool.clone() } }
}

impl<T: Send + 'static> Worker<T> {
    /// Pushes data onto the front of this work queue.
    pub fn push(&self, t: T) {
        unsafe { self.deque.push(t) }
    }
    /// Pops data off the front of the work queue, returning `None` on an empty
    /// queue.
    pub fn pop(&self) -> Option<T> {
        unsafe { self.deque.pop() }
    }

    /// Gets access to the buffer pool that this worker is attached to. This can
    /// be used to create more deques which share the same buffer pool as this
    /// deque.
    pub fn pool<'a>(&'a self) -> &'a BufferPool<T> {
        &self.deque.pool
    }
}

impl<T: Send + 'static> Stealer<T> {
    /// Steals work off the end of the queue (opposite of the worker's end)
    pub fn steal(&self) -> Stolen<T> {
        unsafe { self.deque.steal() }
    }

    /// Gets access to the buffer pool that this stealer is attached to. This
    /// can be used to create more deques which share the same buffer pool as
    /// this deque.
    pub fn pool<'a>(&'a self) -> &'a BufferPool<T> {
        &self.deque.pool
    }
}

impl<T: Send> Clone for Stealer<T> {
    fn clone(&self) -> Stealer<T> {
        Stealer { deque: self.deque.clone() }
    }
}

// Almost all of this code can be found directly in the paper so I'm not
// personally going to heavily comment what's going on here.

impl<T: Send + 'static> Deque<T> {
    fn new(mut pool: BufferPool<T>) -> Deque<T> {
        let buf = pool.alloc(MIN_BITS);
        Deque {
            bottom: AtomicIsize::new(0),
            top: AtomicIsize::new(0),
            array: AtomicPtr::new(unsafe { transmute(buf) }),
            pool: pool,
        }
    }

    unsafe fn push(&self, data: T) {
        let mut b = self.bottom.load(SeqCst);
        let t = self.top.load(SeqCst);
        let mut a = self.array.load(SeqCst);
        let size = b - t;
        if size >= (*a).size() - 1 {
            // You won't find this code in the chase-lev deque paper. This is
            // alluded to in a small footnote, however. We always free a buffer
            // when growing in order to prevent leaks.
            a = self.swap_buffer(b, a, (*a).resize(b, t, 1));
            b = self.bottom.load(SeqCst);
        }
        (*a).put(b, data);
        self.bottom.store(b + 1, SeqCst);
    }

    unsafe fn pop(&self) -> Option<T> {
        let b = self.bottom.load(SeqCst);
        let a = self.array.load(SeqCst);
        let b = b - 1;
        self.bottom.store(b, SeqCst);
        let t = self.top.load(SeqCst);
        let size = b - t;
        if size < 0 {
            self.bottom.store(t, SeqCst);
            return None;
        }
        let data = (*a).get(b);
        if size > 0 {
            self.maybe_shrink(b, t);
            return Some(data);
        }
        if self.top.compare_and_swap(t, t + 1, SeqCst) == t {
            self.bottom.store(t + 1, SeqCst);
            return Some(data);
        } else {
            self.bottom.store(t + 1, SeqCst);
            forget(data); // someone else stole this value
            return None;
        }
    }

    unsafe fn steal(&self) -> Stolen<T> {
        let t = self.top.load(SeqCst);
        let old = self.array.load(SeqCst);
        let b = self.bottom.load(SeqCst);
        let a = self.array.load(SeqCst);
        let size = b - t;
        if size <= 0 { return Empty }
        if size % (*a).size() == 0 {
            if a == old && t == self.top.load(SeqCst) {
                return Empty
            }
            return Abort
        }
        let data = (*a).get(t);
        if self.top.compare_and_swap(t, t + 1, SeqCst) == t {
            Data(data)
        } else {
            forget(data); // someone else stole this value
            Abort
        }
    }

    unsafe fn maybe_shrink(&self, b: isize, t: isize) {
        let a = self.array.load(SeqCst);
        if b - t < (*a).size() / K && b - t > (1 << MIN_BITS) {
            self.swap_buffer(b, a, (*a).resize(b, t, -1));
        }
    }

    // Helper routine not mentioned in the paper which is used in growing and
    // shrinking buffers to swap in a new buffer into place. As a bit of a
    // recap, the whole point that we need a buffer pool rather than just
    // calling malloc/free directly is that stealers can continue using buffers
    // after this method has called 'free' on it. The continued usage is simply
    // a read followed by a forget, but we must make sure that the memory can
    // continue to be read after we flag this buffer for reclamation.
    unsafe fn swap_buffer(&self, b: isize, old: *mut Buffer<T>,
                          buf: Buffer<T>) -> *mut Buffer<T> {
        let newbuf: *mut Buffer<T> = transmute(box buf);
        self.array.store(newbuf, SeqCst);
        let ss = (*newbuf).size();
        self.bottom.store(b + ss, SeqCst);
        let t = self.top.load(SeqCst);
        if self.top.compare_and_swap(t, t + ss, SeqCst) != t {
            self.bottom.store(b, SeqCst);
        }
        self.pool.free(transmute(old));
        return newbuf;
    }
}


#[unsafe_destructor]
impl<T: Send + 'static> Drop for Deque<T> {
    fn drop(&mut self) {
        let t = self.top.load(SeqCst);
        let b = self.bottom.load(SeqCst);
        let a = self.array.load(SeqCst);
        // Free whatever is leftover in the dequeue, and then move the buffer
        // back into the pool.
        for i in t..b {
            let _: T = unsafe { (*a).get(i) };
        }
        self.pool.free(unsafe { transmute(a) });
    }
}

#[inline]
fn buffer_alloc_size<T>(log_size: usize) -> usize {
    (1 << log_size) * size_of::<T>()
}

impl<T: Send> Buffer<T> {
    unsafe fn new(log_size: usize) -> Buffer<T> {
        let size = buffer_alloc_size::<T>(log_size);
        let buffer = allocate(size, min_align_of::<T>());
        if buffer.is_null() { ::alloc::oom() }
        Buffer {
            storage: buffer as *const T,
            log_size: log_size,
        }
    }

    fn size(&self) -> isize { 1 << self.log_size }

    // Apparently LLVM cannot optimize (foo % (1 << bar)) into this implicitly
    fn mask(&self) -> isize { (1 << self.log_size) - 1 }

    unsafe fn elem(&self, i: isize) -> *const T {
        self.storage.offset(i & self.mask())
    }

    // This does not protect against loading duplicate values of the same cell,
    // nor does this clear out the contents contained within. Hence, this is a
    // very unsafe method which the caller needs to treat specially in case a
    // race is lost.
    unsafe fn get(&self, i: isize) -> T {
        ptr::read(self.elem(i))
    }

    // Unsafe because this unsafely overwrites possibly uninitialized or
    // initialized data.
    unsafe fn put(&self, i: isize, t: T) {
        ptr::write(self.elem(i) as *mut T, t);
    }

    // Again, unsafe because this has incredibly dubious ownership violations.
    // It is assumed that this buffer is immediately dropped.
    unsafe fn resize(&self, b: isize, t: isize, delta: isize) -> Buffer<T> {
        // NB: not entirely obvious, but thanks to 2's complement,
        // casting delta to usize and then adding gives the desired
        // effect.
        let buf = Buffer::new(self.log_size.wrapping_add(delta as usize));
        for i in t..b {
            buf.put(i, self.get(i));
        }
        return buf;
    }
}

#[unsafe_destructor]
impl<T: Send> Drop for Buffer<T> {
    fn drop(&mut self) {
        // It is assumed that all buffers are empty on drop.
        let size = buffer_alloc_size::<T>(self.log_size);
        unsafe { deallocate(self.storage as *mut u8, size, min_align_of::<T>()) }
    }
}