1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use syntax::{ast, ast_map, ast_util, codemap, visit};
use syntax::ast::Public;
use syntax::attr::AttrMetaMethods;
use rustc::lint::{Context, LintPass, LintArray, Level};
use rustc::middle::ty::expr_ty;
use rustc::middle::{ty, def};
use rustc::middle::typeck::astconv::AstConv;
use rustc::util::ppaux::Repr;
use utils::match_lang_ty;
declare_lint!(TRANSMUTE_TYPE_LINT, Allow,
"Warn and report types being transmuted")
declare_lint!(UNROOTED_MUST_ROOT, Deny,
"Warn and report usage of unrooted jsmanaged objects")
declare_lint!(PRIVATIZE, Deny,
"Allows to enforce private fields for struct definitions")
declare_lint!(INHERITANCE_INTEGRITY, Deny,
"Ensures that struct fields are properly laid out for inheritance to work")
/// Lint for auditing transmutes
///
/// This lint (off by default, enable with `-W transmute-type-lint`) warns about all the transmutes
/// being used, along with the types they transmute to/from.
pub struct TransmutePass;
/// Lint for ensuring safe usage of unrooted pointers
///
/// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]` values are used correctly.
/// "Incorrect" usage includes:
///
/// - Not being used in a struct/enum field which is not `#[must_root]` itself
/// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`)
/// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement.
///
/// This helps catch most situations where pointers like `JS<T>` are used in a way that they can be invalidated by a GC pass.
pub struct UnrootedPass;
/// Lint for keeping DOM fields private
///
/// This lint (disable with `-A privatize`/`#[allow(privatize)]`) ensures all types marked with `#[privatize]` have no private fields
pub struct PrivatizePass;
/// Lint for ensuring proper layout of DOM structs
///
/// A DOM struct must have one Reflector field or one field
/// which itself is a DOM struct (in which case it must be the first field).
pub struct InheritancePass;
impl LintPass for TransmutePass {
fn get_lints(&self) -> LintArray {
lint_array!(TRANSMUTE_TYPE_LINT)
}
fn check_expr(&mut self, cx: &Context, ex: &ast::Expr) {
match ex.node {
ast::ExprCall(ref expr, ref args) => {
match expr.node {
ast::ExprPath(ref path) => {
if path.segments.last()
.map_or(false, |ref segment| segment.identifier.name.as_str() == "transmute")
&& args.len() == 1 {
let tcx = cx.tcx();
cx.span_lint(TRANSMUTE_TYPE_LINT, ex.span,
format!("Transmute to {} from {} detected",
expr_ty(tcx, ex).repr(tcx),
expr_ty(tcx, &**args.get(0).unwrap()).repr(tcx)
).as_slice());
}
}
_ => {}
}
}
_ => {}
}
}
}
// Checks if a type has the #[must_root] annotation.
// Unwraps pointers as well
// TODO (#3874, sort of): unwrap other types like Vec/Option/HashMap/etc
fn lint_unrooted_ty(cx: &Context, ty: &ast::Ty, warning: &str) {
match ty.node {
ast::TyVec(ref t) | ast::TyFixedLengthVec(ref t, _) |
ast::TyPtr(ast::MutTy { ty: ref t, ..}) | ast::TyRptr(_, ast::MutTy { ty: ref t, ..}) => lint_unrooted_ty(cx, &**t, warning),
ast::TyPath(_, _, id) => {
match cx.tcx.def_map.borrow()[id].clone() {
def::DefTy(def_id, _) => {
if ty::has_attr(cx.tcx, def_id, "must_root") {
cx.span_lint(UNROOTED_MUST_ROOT, ty.span, warning);
}
}
_ => (),
}
}
_ => (),
};
}
// Determines if a block is in an unsafe context so that an unhelpful
// lint can be aborted.
fn unsafe_context(map: &ast_map::Map, id: ast::NodeId) -> bool {
match map.find(map.get_parent(id)) {
Some(ast_map::NodeImplItem(itm)) => {
match *itm {
ast::MethodImplItem(ref meth) => match meth.node {
ast::MethDecl(_, _, _, _, style, _, _, _) => match style {
ast::UnsafeFn => true,
_ => false,
},
_ => false,
},
_ => false,
}
},
Some(ast_map::NodeItem(itm)) => {
match itm.node {
ast::ItemFn(_, style, _, _, _) => match style {
ast::UnsafeFn => true,
_ => false,
},
_ => false,
}
}
_ => false // There are probably a couple of other unsafe cases we don't care to lint, those will need to be added.
}
}
impl LintPass for UnrootedPass {
fn get_lints(&self) -> LintArray {
lint_array!(UNROOTED_MUST_ROOT)
}
/// All structs containing #[must_root] types must be #[must_root] themselves
fn check_struct_def(&mut self, cx: &Context, def: &ast::StructDef, _i: ast::Ident, _gen: &ast::Generics, id: ast::NodeId) {
if cx.tcx.map.expect_item(id).attrs.iter().all(|a| !a.check_name("must_root")) {
for ref field in def.fields.iter() {
lint_unrooted_ty(cx, &*field.node.ty,
"Type must be rooted, use #[must_root] on the struct definition to propagate");
}
}
}
/// All enums containing #[must_root] types must be #[must_root] themselves
fn check_variant(&mut self, cx: &Context, var: &ast::Variant, _gen: &ast::Generics) {
let ref map = cx.tcx.map;
if map.expect_item(map.get_parent(var.node.id)).attrs.iter().all(|a| !a.check_name("must_root")) {
match var.node.kind {
ast::TupleVariantKind(ref vec) => {
for ty in vec.iter() {
lint_unrooted_ty(cx, &*ty.ty,
"Type must be rooted, use #[must_root] on the enum definition to propagate")
}
}
_ => () // Struct variants already caught by check_struct_def
}
}
}
/// Function arguments that are #[must_root] types are not allowed
fn check_fn(&mut self, cx: &Context, kind: visit::FnKind, decl: &ast::FnDecl,
block: &ast::Block, _span: codemap::Span, id: ast::NodeId) {
match kind {
visit::FkItemFn(i, _, _, _) |
visit::FkMethod(i, _, _) if i.as_str() == "new" || i.as_str() == "new_inherited" => {
return;
},
visit::FkItemFn(_, _, style, _) => match style {
ast::UnsafeFn => return,
_ => ()
},
_ => ()
}
if unsafe_context(&cx.tcx.map, id) {
return;
}
match block.rules {
ast::DefaultBlock => {
for arg in decl.inputs.iter() {
lint_unrooted_ty(cx, &*arg.ty,
"Type must be rooted")
}
}
_ => () // fn is `unsafe`
}
}
// Partially copied from rustc::middle::lint::builtin
// Catches `let` statements and assignments which store a #[must_root] value
// Expressions which return out of blocks eventually end up in a `let` or assignment
// statement or a function return (which will be caught when it is used elsewhere)
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
match s.node {
ast::StmtDecl(_, id) |
ast::StmtExpr(_, id) |
ast::StmtSemi(_, id) if unsafe_context(&cx.tcx.map, id) => {
return
},
_ => ()
};
let expr = match s.node {
// Catch a `let` binding
ast::StmtDecl(ref decl, _) => match decl.node {
ast::DeclLocal(ref loc) => match loc.init {
Some(ref e) => &**e,
_ => return
},
_ => return
},
ast::StmtExpr(ref expr, _) => match expr.node {
// This catches deferred `let` statements
ast::ExprAssign(_, ref e) |
// Match statements allow you to bind onto the variable later in an arm
// We need not check arms individually since enum/struct fields are already
// linted in `check_struct_def` and `check_variant`
// (so there is no way of destructuring out a `#[must_root]` field)
ast::ExprMatch(ref e, _, _) |
// For loops allow you to bind a return value locally
ast::ExprForLoop(_, ref e, _, _) => &**e,
// XXXManishearth look into `if let` once it lands in our rustc
_ => return
},
_ => return
};
let t = expr_ty(cx.tcx, &*expr);
match ty::get(t).sty {
ty::ty_struct(did, _) |
ty::ty_enum(did, _) => {
if ty::has_attr(cx.tcx, did, "must_root") {
cx.span_lint(UNROOTED_MUST_ROOT, expr.span,
format!("Expression of type {} must be rooted", t.repr(cx.tcx)).as_slice());
}
}
_ => {}
}
}
}
impl LintPass for PrivatizePass {
fn get_lints(&self) -> LintArray {
lint_array!(PRIVATIZE)
}
fn check_struct_def(&mut self, cx: &Context, def: &ast::StructDef, _i: ast::Ident, _gen: &ast::Generics, id: ast::NodeId) {
if ty::has_attr(cx.tcx, ast_util::local_def(id), "privatize") {
for field in def.fields.iter() {
match field.node {
ast::StructField_ { kind: ast::NamedField(ident, visibility), .. } if visibility == Public => {
cx.span_lint(PRIVATIZE, field.span,
format!("Field {} is public where only private fields are allowed", ident.name).as_slice());
}
_ => {}
}
}
}
}
}
impl LintPass for InheritancePass {
fn get_lints(&self) -> LintArray {
lint_array!(INHERITANCE_INTEGRITY)
}
fn check_struct_def(&mut self, cx: &Context, def: &ast::StructDef, _i: ast::Ident, _gen: &ast::Generics, id: ast::NodeId) {
// Lints are run post expansion, so it's fine to use
// #[_dom_struct_marker] here without also checking for #[dom_struct]
if ty::has_attr(cx.tcx, ast_util::local_def(id), "_dom_struct_marker") {
// Find the reflector, if any
let reflector_span = def.fields.iter().enumerate()
.find(|&(ctr, f)| {
if match_lang_ty(cx, &*f.node.ty, "reflector") {
if ctr > 0 {
cx.span_lint(INHERITANCE_INTEGRITY, f.span,
"The Reflector should be the first field of the DOM struct");
}
return true;
}
false
})
.map(|(_, f)| f.span);
// Find all #[dom_struct] fields
let dom_spans: Vec<_> = def.fields.iter().enumerate().filter_map(|(ctr, f)| {
if let ast::TyPath(_, _, ty_id) = f.node.ty.node {
if let Some(def::DefTy(def_id, _)) = cx.tcx.def_map.borrow().get(&ty_id).cloned() {
if ty::has_attr(cx.tcx, def_id, "_dom_struct_marker") {
// If the field is not the first, it's probably
// being misused (a)
if ctr > 0 {
cx.span_lint(INHERITANCE_INTEGRITY, f.span,
"Bare DOM structs should only be used as the first field of a \
DOM struct. Consider using JS<T> instead.");
}
return Some(f.span)
}
}
}
None
}).collect();
// We should not have both a reflector and a dom struct field
if let Some(sp) = reflector_span {
if dom_spans.len() > 0 {
cx.span_lint(INHERITANCE_INTEGRITY, cx.tcx.map.expect_item(id).span,
"This DOM struct has both Reflector and bare DOM struct members");
if cx.current_level(INHERITANCE_INTEGRITY) != Level::Allow {
let sess = cx.sess();
sess.span_note(sp, "Reflector found here");
for span in dom_spans.iter() {
sess.span_note(*span, "Bare DOM struct found here");
}
}
}
// Nor should we have more than one dom struct field
} else if dom_spans.len() > 1 {
cx.span_lint(INHERITANCE_INTEGRITY, cx.tcx.map.expect_item(id).span,
"This DOM struct has multiple DOM struct members, only one is allowed");
if cx.current_level(INHERITANCE_INTEGRITY) != Level::Allow {
for span in dom_spans.iter() {
cx.sess().span_note(*span, "Bare DOM struct found here");
}
}
} else if dom_spans.len() == 0 {
cx.span_lint(INHERITANCE_INTEGRITY, cx.tcx.map.expect_item(id).span,
"This DOM struct has no reflector or parent DOM struct");
}
}
}
}
|