aboutsummaryrefslogtreecommitdiffstats
path: root/components/hashglobe/src/table.rs
blob: 0fe08f2b052199abfc1bd67eb9140af4ed40a681 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::alloc::{alloc, dealloc};
use crate::shim::{Shared, Unique};
use std::cmp;
use std::hash::{BuildHasher, Hash, Hasher};
use std::marker;
use std::mem::{self, align_of, size_of};
use std::ops::{Deref, DerefMut};
use std::ptr;

use self::BucketState::*;
use crate::FailedAllocationError;

/// Integer type used for stored hash values.
///
/// No more than bit_width(usize) bits are needed to select a bucket.
///
/// The most significant bit is ours to use for tagging `SafeHash`.
///
/// (Even if we could have usize::MAX bytes allocated for buckets,
/// each bucket stores at least a `HashUint`, so there can be no more than
/// usize::MAX / size_of(usize) buckets.)
type HashUint = usize;

const EMPTY_BUCKET: HashUint = 0;
const EMPTY: usize = 1;

/// Special `Unique<HashUint>` that uses the lower bit of the pointer
/// to expose a boolean tag.
/// Note: when the pointer is initialized to EMPTY `.ptr()` will return
/// null and the tag functions shouldn't be used.
struct TaggedHashUintPtr(Unique<HashUint>);

impl TaggedHashUintPtr {
    #[inline]
    unsafe fn new(ptr: *mut HashUint) -> Self {
        debug_assert!(ptr as usize & 1 == 0 || ptr as usize == EMPTY as usize);
        TaggedHashUintPtr(Unique::new_unchecked(ptr))
    }

    #[inline]
    fn set_tag(&mut self, value: bool) {
        let mut usize_ptr = self.0.as_ptr() as usize;
        unsafe {
            if value {
                usize_ptr |= 1;
            } else {
                usize_ptr &= !1;
            }
            self.0 = Unique::new_unchecked(usize_ptr as *mut HashUint)
        }
    }

    #[inline]
    fn tag(&self) -> bool {
        (self.0.as_ptr() as usize) & 1 == 1
    }

    #[inline]
    fn ptr(&self) -> *mut HashUint {
        (self.0.as_ptr() as usize & !1) as *mut HashUint
    }
}

/// The raw hashtable, providing safe-ish access to the unzipped and highly
/// optimized arrays of hashes, and key-value pairs.
///
/// This design is a lot faster than the naive
/// `Vec<Option<(u64, K, V)>>`, because we don't pay for the overhead of an
/// option on every element, and we get a generally more cache-aware design.
///
/// Essential invariants of this structure:
///
///   - if t.hashes[i] == EMPTY_BUCKET, then `Bucket::at_index(&t, i).raw`
///     points to 'undefined' contents. Don't read from it. This invariant is
///     enforced outside this module with the `EmptyBucket`, `FullBucket`,
///     and `SafeHash` types.
///
///   - An `EmptyBucket` is only constructed at an index with
///     a hash of EMPTY_BUCKET.
///
///   - A `FullBucket` is only constructed at an index with a
///     non-EMPTY_BUCKET hash.
///
///   - A `SafeHash` is only constructed for non-`EMPTY_BUCKET` hash. We get
///     around hashes of zero by changing them to 0x8000_0000_0000_0000,
///     which will likely map to the same bucket, while not being confused
///     with "empty".
///
///   - Both "arrays represented by pointers" are the same length:
///     `capacity`. This is set at creation and never changes. The arrays
///     are unzipped and are more cache aware (scanning through 8 hashes
///     brings in at most 2 cache lines, since they're all right beside each
///     other). This layout may waste space in padding such as in a map from
///     u64 to u8, but is a more cache conscious layout as the key-value pairs
///     are only very shortly probed and the desired value will be in the same
///     or next cache line.
///
/// You can kind of think of this module/data structure as a safe wrapper
/// around just the "table" part of the hashtable. It enforces some
/// invariants at the type level and employs some performance trickery,
/// but in general is just a tricked out `Vec<Option<(u64, K, V)>>`.
///
/// The hashtable also exposes a special boolean tag. The tag defaults to false
/// when the RawTable is created and is accessible with the `tag` and `set_tag`
/// functions.
pub struct RawTable<K, V> {
    capacity_mask: usize,
    size: usize,
    hashes: TaggedHashUintPtr,

    // Because K/V do not appear directly in any of the types in the struct,
    // inform rustc that in fact instances of K and V are reachable from here.
    marker: marker::PhantomData<(K, V)>,
}

unsafe impl<K: Send, V: Send> Send for RawTable<K, V> {}
unsafe impl<K: Sync, V: Sync> Sync for RawTable<K, V> {}

// An unsafe view of a RawTable bucket
// Valid indexes are within [0..table_capacity)
pub struct RawBucket<K, V> {
    hash_start: *mut HashUint,
    // We use *const to ensure covariance with respect to K and V
    pair_start: *const (K, V),
    idx: usize,
    _marker: marker::PhantomData<(K, V)>,
}

impl<K, V> Copy for RawBucket<K, V> {}
impl<K, V> Clone for RawBucket<K, V> {
    fn clone(&self) -> RawBucket<K, V> {
        *self
    }
}

pub struct Bucket<K, V, M> {
    raw: RawBucket<K, V>,
    table: M,
}

impl<K, V, M: Copy> Copy for Bucket<K, V, M> {}
impl<K, V, M: Copy> Clone for Bucket<K, V, M> {
    fn clone(&self) -> Bucket<K, V, M> {
        *self
    }
}

pub struct EmptyBucket<K, V, M> {
    raw: RawBucket<K, V>,
    table: M,
}

pub struct FullBucket<K, V, M> {
    raw: RawBucket<K, V>,
    table: M,
}

pub type FullBucketMut<'table, K, V> = FullBucket<K, V, &'table mut RawTable<K, V>>;

pub enum BucketState<K, V, M> {
    Empty(EmptyBucket<K, V, M>),
    Full(FullBucket<K, V, M>),
}

// A GapThenFull encapsulates the state of two consecutive buckets at once.
// The first bucket, called the gap, is known to be empty.
// The second bucket is full.
pub struct GapThenFull<K, V, M> {
    gap: EmptyBucket<K, V, ()>,
    full: FullBucket<K, V, M>,
}

/// A hash that is not zero, since we use a hash of zero to represent empty
/// buckets.
#[derive(PartialEq, Copy, Clone)]
pub struct SafeHash {
    hash: HashUint,
}

impl SafeHash {
    /// Peek at the hash value, which is guaranteed to be non-zero.
    #[inline(always)]
    pub fn inspect(&self) -> HashUint {
        self.hash
    }

    #[inline(always)]
    pub fn new(hash: u64) -> Self {
        // We need to avoid 0 in order to prevent collisions with
        // EMPTY_HASH. We can maintain our precious uniform distribution
        // of initial indexes by unconditionally setting the MSB,
        // effectively reducing the hashes by one bit.
        //
        // Truncate hash to fit in `HashUint`.
        let hash_bits = size_of::<HashUint>() * 8;
        SafeHash {
            hash: (1 << (hash_bits - 1)) | (hash as HashUint),
        }
    }
}

/// We need to remove hashes of 0. That's reserved for empty buckets.
/// This function wraps up `hash_keyed` to be the only way outside this
/// module to generate a SafeHash.
pub fn make_hash<T: ?Sized, S>(hash_state: &S, t: &T) -> SafeHash
where
    T: Hash,
    S: BuildHasher,
{
    let mut state = hash_state.build_hasher();
    t.hash(&mut state);
    SafeHash::new(state.finish())
}

// `replace` casts a `*HashUint` to a `*SafeHash`. Since we statically
// ensure that a `FullBucket` points to an index with a non-zero hash,
// and a `SafeHash` is just a `HashUint` with a different name, this is
// safe.
//
// This test ensures that a `SafeHash` really IS the same size as a
// `HashUint`. If you need to change the size of `SafeHash` (and
// consequently made this test fail), `replace` needs to be
// modified to no longer assume this.
#[test]
fn can_alias_safehash_as_hash() {
    assert_eq!(size_of::<SafeHash>(), size_of::<HashUint>())
}

// RawBucket methods are unsafe as it's possible to
// make a RawBucket point to invalid memory using safe code.
impl<K, V> RawBucket<K, V> {
    unsafe fn hash(&self) -> *mut HashUint {
        self.hash_start.offset(self.idx as isize)
    }
    unsafe fn pair(&self) -> *mut (K, V) {
        self.pair_start.offset(self.idx as isize) as *mut (K, V)
    }
    unsafe fn hash_pair(&self) -> (*mut HashUint, *mut (K, V)) {
        (self.hash(), self.pair())
    }
}

// Buckets hold references to the table.
impl<K, V, M> FullBucket<K, V, M> {
    /// Borrow a reference to the table.
    pub fn table(&self) -> &M {
        &self.table
    }
    /// Borrow a mutable reference to the table.
    pub fn table_mut(&mut self) -> &mut M {
        &mut self.table
    }
    /// Move out the reference to the table.
    pub fn into_table(self) -> M {
        self.table
    }
    /// Get the raw index.
    pub fn index(&self) -> usize {
        self.raw.idx
    }
    /// Get the raw bucket.
    pub fn raw(&self) -> RawBucket<K, V> {
        self.raw
    }
}

impl<K, V, M> EmptyBucket<K, V, M> {
    /// Borrow a reference to the table.
    pub fn table(&self) -> &M {
        &self.table
    }
    /// Borrow a mutable reference to the table.
    pub fn table_mut(&mut self) -> &mut M {
        &mut self.table
    }
}

impl<K, V, M> Bucket<K, V, M> {
    /// Get the raw index.
    pub fn index(&self) -> usize {
        self.raw.idx
    }
    /// get the table.
    pub fn into_table(self) -> M {
        self.table
    }
}

impl<K, V, M> Deref for FullBucket<K, V, M>
where
    M: Deref<Target = RawTable<K, V>>,
{
    type Target = RawTable<K, V>;
    fn deref(&self) -> &RawTable<K, V> {
        &self.table
    }
}

/// `Put` is implemented for types which provide access to a table and cannot be invalidated
///  by filling a bucket. A similar implementation for `Take` is possible.
pub trait Put<K, V> {
    unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V>;
}

impl<'t, K, V> Put<K, V> for &'t mut RawTable<K, V> {
    unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> {
        *self
    }
}

impl<K, V, M> Put<K, V> for Bucket<K, V, M>
where
    M: Put<K, V>,
{
    unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> {
        self.table.borrow_table_mut()
    }
}

impl<K, V, M> Put<K, V> for FullBucket<K, V, M>
where
    M: Put<K, V>,
{
    unsafe fn borrow_table_mut(&mut self) -> &mut RawTable<K, V> {
        self.table.borrow_table_mut()
    }
}

impl<K, V, M: Deref<Target = RawTable<K, V>>> Bucket<K, V, M> {
    pub fn new(table: M, hash: SafeHash) -> Bucket<K, V, M> {
        Bucket::at_index(table, hash.inspect() as usize)
    }

    pub fn new_from(r: RawBucket<K, V>, t: M) -> Bucket<K, V, M> {
        Bucket { raw: r, table: t }
    }

    pub fn at_index(table: M, ib_index: usize) -> Bucket<K, V, M> {
        // if capacity is 0, then the RawBucket will be populated with bogus pointers.
        // This is an uncommon case though, so avoid it in release builds.
        debug_assert!(
            table.capacity() > 0,
            "Table should have capacity at this point"
        );
        let ib_index = ib_index & table.capacity_mask;
        Bucket {
            raw: table.raw_bucket_at(ib_index),
            table,
        }
    }

    pub fn first(table: M) -> Bucket<K, V, M> {
        Bucket {
            raw: table.raw_bucket_at(0),
            table,
        }
    }

    // "So a few of the first shall be last: for many be called,
    // but few chosen."
    //
    // We'll most likely encounter a few buckets at the beginning that
    // have their initial buckets near the end of the table. They were
    // placed at the beginning as the probe wrapped around the table
    // during insertion. We must skip forward to a bucket that won't
    // get reinserted too early and won't unfairly steal others spot.
    // This eliminates the need for robin hood.
    pub fn head_bucket(table: M) -> Bucket<K, V, M> {
        let mut bucket = Bucket::first(table);

        loop {
            bucket = match bucket.peek() {
                Full(full) => {
                    if full.displacement() == 0 {
                        // This bucket occupies its ideal spot.
                        // It indicates the start of another "cluster".
                        bucket = full.into_bucket();
                        break;
                    }
                    // Leaving this bucket in the last cluster for later.
                    full.into_bucket()
                },
                Empty(b) => {
                    // Encountered a hole between clusters.
                    b.into_bucket()
                },
            };
            bucket.next();
        }
        bucket
    }

    /// Reads a bucket at a given index, returning an enum indicating whether
    /// it's initialized or not. You need to match on this enum to get
    /// the appropriate types to call most of the other functions in
    /// this module.
    pub fn peek(self) -> BucketState<K, V, M> {
        match unsafe { *self.raw.hash() } {
            EMPTY_BUCKET => Empty(EmptyBucket {
                raw: self.raw,
                table: self.table,
            }),
            _ => Full(FullBucket {
                raw: self.raw,
                table: self.table,
            }),
        }
    }

    /// Modifies the bucket in place to make it point to the next slot.
    pub fn next(&mut self) {
        self.raw.idx = self.raw.idx.wrapping_add(1) & self.table.capacity_mask;
    }

    /// Modifies the bucket in place to make it point to the previous slot.
    pub fn prev(&mut self) {
        self.raw.idx = self.raw.idx.wrapping_sub(1) & self.table.capacity_mask;
    }
}

impl<K, V, M: Deref<Target = RawTable<K, V>>> EmptyBucket<K, V, M> {
    #[inline]
    pub fn next(self) -> Bucket<K, V, M> {
        let mut bucket = self.into_bucket();
        bucket.next();
        bucket
    }

    #[inline]
    pub fn into_bucket(self) -> Bucket<K, V, M> {
        Bucket {
            raw: self.raw,
            table: self.table,
        }
    }

    pub fn gap_peek(self) -> Result<GapThenFull<K, V, M>, Bucket<K, V, M>> {
        let gap = EmptyBucket {
            raw: self.raw,
            table: (),
        };

        match self.next().peek() {
            Full(bucket) => Ok(GapThenFull { gap, full: bucket }),
            Empty(e) => Err(e.into_bucket()),
        }
    }
}

impl<K, V, M> EmptyBucket<K, V, M>
where
    M: Put<K, V>,
{
    /// Puts given key and value pair, along with the key's hash,
    /// into this bucket in the hashtable. Note how `self` is 'moved' into
    /// this function, because this slot will no longer be empty when
    /// we return! A `FullBucket` is returned for later use, pointing to
    /// the newly-filled slot in the hashtable.
    ///
    /// Use `make_hash` to construct a `SafeHash` to pass to this function.
    pub fn put(mut self, hash: SafeHash, key: K, value: V) -> FullBucket<K, V, M> {
        unsafe {
            *self.raw.hash() = hash.inspect();
            ptr::write(self.raw.pair(), (key, value));

            self.table.borrow_table_mut().size += 1;
        }

        FullBucket {
            raw: self.raw,
            table: self.table,
        }
    }
}

impl<K, V, M: Deref<Target = RawTable<K, V>>> FullBucket<K, V, M> {
    #[inline]
    pub fn next(self) -> Bucket<K, V, M> {
        let mut bucket = self.into_bucket();
        bucket.next();
        bucket
    }

    #[inline]
    pub fn into_bucket(self) -> Bucket<K, V, M> {
        Bucket {
            raw: self.raw,
            table: self.table,
        }
    }

    /// Duplicates the current position. This can be useful for operations
    /// on two or more buckets.
    pub fn stash(self) -> FullBucket<K, V, Self> {
        FullBucket {
            raw: self.raw,
            table: self,
        }
    }

    /// Get the distance between this bucket and the 'ideal' location
    /// as determined by the key's hash stored in it.
    ///
    /// In the cited blog posts above, this is called the "distance to
    /// initial bucket", or DIB. Also known as "probe count".
    pub fn displacement(&self) -> usize {
        // Calculates the distance one has to travel when going from
        // `hash mod capacity` onwards to `idx mod capacity`, wrapping around
        // if the destination is not reached before the end of the table.
        (self.raw.idx.wrapping_sub(self.hash().inspect() as usize)) & self.table.capacity_mask
    }

    #[inline]
    pub fn hash(&self) -> SafeHash {
        unsafe {
            SafeHash {
                hash: *self.raw.hash(),
            }
        }
    }

    /// Gets references to the key and value at a given index.
    pub fn read(&self) -> (&K, &V) {
        unsafe {
            let pair_ptr = self.raw.pair();
            (&(*pair_ptr).0, &(*pair_ptr).1)
        }
    }
}

// We take a mutable reference to the table instead of accepting anything that
// implements `DerefMut` to prevent fn `take` from being called on `stash`ed
// buckets.
impl<'t, K, V> FullBucket<K, V, &'t mut RawTable<K, V>> {
    /// Removes this bucket's key and value from the hashtable.
    ///
    /// This works similarly to `put`, building an `EmptyBucket` out of the
    /// taken bucket.
    pub fn take(self) -> (EmptyBucket<K, V, &'t mut RawTable<K, V>>, K, V) {
        self.table.size -= 1;

        unsafe {
            *self.raw.hash() = EMPTY_BUCKET;
            let (k, v) = ptr::read(self.raw.pair());
            (
                EmptyBucket {
                    raw: self.raw,
                    table: self.table,
                },
                k,
                v,
            )
        }
    }
}

// This use of `Put` is misleading and restrictive, but safe and sufficient for our use cases
// where `M` is a full bucket or table reference type with mutable access to the table.
impl<K, V, M> FullBucket<K, V, M>
where
    M: Put<K, V>,
{
    pub fn replace(&mut self, h: SafeHash, k: K, v: V) -> (SafeHash, K, V) {
        unsafe {
            let old_hash = ptr::replace(self.raw.hash() as *mut SafeHash, h);
            let (old_key, old_val) = ptr::replace(self.raw.pair(), (k, v));

            (old_hash, old_key, old_val)
        }
    }
}

impl<K, V, M> FullBucket<K, V, M>
where
    M: Deref<Target = RawTable<K, V>> + DerefMut,
{
    /// Gets mutable references to the key and value at a given index.
    pub fn read_mut(&mut self) -> (&mut K, &mut V) {
        unsafe {
            let pair_ptr = self.raw.pair();
            (&mut (*pair_ptr).0, &mut (*pair_ptr).1)
        }
    }
}

impl<'t, K, V, M> FullBucket<K, V, M>
where
    M: Deref<Target = RawTable<K, V>> + 't,
{
    /// Exchange a bucket state for immutable references into the table.
    /// Because the underlying reference to the table is also consumed,
    /// no further changes to the structure of the table are possible;
    /// in exchange for this, the returned references have a longer lifetime
    /// than the references returned by `read()`.
    pub fn into_refs(self) -> (&'t K, &'t V) {
        unsafe {
            let pair_ptr = self.raw.pair();
            (&(*pair_ptr).0, &(*pair_ptr).1)
        }
    }
}

impl<'t, K, V, M> FullBucket<K, V, M>
where
    M: Deref<Target = RawTable<K, V>> + DerefMut + 't,
{
    /// This works similarly to `into_refs`, exchanging a bucket state
    /// for mutable references into the table.
    pub fn into_mut_refs(self) -> (&'t mut K, &'t mut V) {
        unsafe {
            let pair_ptr = self.raw.pair();
            (&mut (*pair_ptr).0, &mut (*pair_ptr).1)
        }
    }
}

impl<K, V, M> GapThenFull<K, V, M>
where
    M: Deref<Target = RawTable<K, V>>,
{
    #[inline]
    pub fn full(&self) -> &FullBucket<K, V, M> {
        &self.full
    }

    pub fn into_table(self) -> M {
        self.full.into_table()
    }

    pub fn shift(mut self) -> Result<GapThenFull<K, V, M>, Bucket<K, V, M>> {
        unsafe {
            let (gap_hash, gap_pair) = self.gap.raw.hash_pair();
            let (full_hash, full_pair) = self.full.raw.hash_pair();
            *gap_hash = mem::replace(&mut *full_hash, EMPTY_BUCKET);
            ptr::copy_nonoverlapping(full_pair, gap_pair, 1);
        }

        let FullBucket { raw: prev_raw, .. } = self.full;

        match self.full.next().peek() {
            Full(bucket) => {
                self.gap.raw = prev_raw;

                self.full = bucket;

                Ok(self)
            },
            Empty(b) => Err(b.into_bucket()),
        }
    }
}

/// Rounds up to a multiple of a power of two. Returns the closest multiple
/// of `target_alignment` that is higher or equal to `unrounded`.
///
/// # Panics
///
/// Panics if `target_alignment` is not a power of two.
#[inline]
fn round_up_to_next(unrounded: usize, target_alignment: usize) -> usize {
    assert!(target_alignment.is_power_of_two());
    (unrounded + target_alignment - 1) & !(target_alignment - 1)
}

#[test]
fn test_rounding() {
    assert_eq!(round_up_to_next(0, 4), 0);
    assert_eq!(round_up_to_next(1, 4), 4);
    assert_eq!(round_up_to_next(2, 4), 4);
    assert_eq!(round_up_to_next(3, 4), 4);
    assert_eq!(round_up_to_next(4, 4), 4);
    assert_eq!(round_up_to_next(5, 4), 8);
}

// Returns a tuple of (pairs_offset, end_of_pairs_offset),
// from the start of a mallocated array.
#[inline]
fn calculate_offsets(
    hashes_size: usize,
    pairs_size: usize,
    pairs_align: usize,
) -> (usize, usize, bool) {
    let pairs_offset = round_up_to_next(hashes_size, pairs_align);
    let (end_of_pairs, oflo) = pairs_offset.overflowing_add(pairs_size);

    (pairs_offset, end_of_pairs, oflo)
}

// Returns a tuple of (minimum required malloc alignment, hash_offset,
// array_size), from the start of a mallocated array.
fn calculate_allocation(
    hash_size: usize,
    hash_align: usize,
    pairs_size: usize,
    pairs_align: usize,
) -> (usize, usize, usize, bool) {
    let hash_offset = 0;
    let (_, end_of_pairs, oflo) = calculate_offsets(hash_size, pairs_size, pairs_align);

    let align = cmp::max(hash_align, pairs_align);

    (align, hash_offset, end_of_pairs, oflo)
}

#[test]
fn test_offset_calculation() {
    assert_eq!(calculate_allocation(128, 8, 16, 8), (8, 0, 144, false));
    assert_eq!(calculate_allocation(3, 1, 2, 1), (1, 0, 5, false));
    assert_eq!(calculate_allocation(6, 2, 12, 4), (4, 0, 20, false));
    assert_eq!(calculate_offsets(128, 15, 4), (128, 143, false));
    assert_eq!(calculate_offsets(3, 2, 4), (4, 6, false));
    assert_eq!(calculate_offsets(6, 12, 4), (8, 20, false));
}

impl<K, V> RawTable<K, V> {
    unsafe fn new_uninitialized(capacity: usize) -> RawTable<K, V> {
        extern crate libc;
        if let Ok(table) = Self::try_new_uninitialized(capacity) {
            table
        } else {
            libc::abort();
        }
    }

    /// Does not initialize the buckets. The caller should ensure they,
    /// at the very least, set every hash to EMPTY_BUCKET.
    unsafe fn try_new_uninitialized(
        capacity: usize,
    ) -> Result<RawTable<K, V>, FailedAllocationError> {
        if capacity == 0 {
            return Ok(RawTable {
                size: 0,
                capacity_mask: capacity.wrapping_sub(1),
                hashes: TaggedHashUintPtr::new(EMPTY as *mut HashUint),
                marker: marker::PhantomData,
            });
        }

        // No need for `checked_mul` before a more restrictive check performed
        // later in this method.
        let hashes_size = capacity.wrapping_mul(size_of::<HashUint>());
        let pairs_size = capacity.wrapping_mul(size_of::<(K, V)>());

        // Allocating hashmaps is a little tricky. We need to allocate two
        // arrays, but since we know their sizes and alignments up front,
        // we just allocate a single array, and then have the subarrays
        // point into it.
        //
        // This is great in theory, but in practice getting the alignment
        // right is a little subtle. Therefore, calculating offsets has been
        // factored out into a different function.
        let (alignment, hash_offset, size, oflo) = calculate_allocation(
            hashes_size,
            align_of::<HashUint>(),
            pairs_size,
            align_of::<(K, V)>(),
        );

        if oflo {
            return Err(FailedAllocationError::new(
                "capacity overflow when allocating RawTable",
            ));
        }

        // One check for overflow that covers calculation and rounding of size.
        let size_of_bucket = size_of::<HashUint>()
            .checked_add(size_of::<(K, V)>())
            .unwrap();

        let cap_bytes = capacity.checked_mul(size_of_bucket);

        if let Some(cap_bytes) = cap_bytes {
            if size < cap_bytes {
                return Err(FailedAllocationError::new(
                    "capacity overflow when allocating RawTable",
                ));
            }
        } else {
            return Err(FailedAllocationError::new(
                "capacity overflow when allocating RawTable",
            ));
        }

        // FORK NOTE: Uses alloc shim instead of Heap.alloc
        let buffer = alloc(size, alignment);

        if buffer.is_null() {
            use crate::AllocationInfo;
            return Err(FailedAllocationError {
                reason: "out of memory when allocating RawTable",
                allocation_info: Some(AllocationInfo { size, alignment }),
            });
        }

        let hashes = buffer.offset(hash_offset as isize) as *mut HashUint;

        Ok(RawTable {
            capacity_mask: capacity.wrapping_sub(1),
            size: 0,
            hashes: TaggedHashUintPtr::new(hashes),
            marker: marker::PhantomData,
        })
    }

    fn raw_bucket_at(&self, index: usize) -> RawBucket<K, V> {
        let hashes_size = self.capacity() * size_of::<HashUint>();
        let pairs_size = self.capacity() * size_of::<(K, V)>();

        let (pairs_offset, _, oflo) =
            calculate_offsets(hashes_size, pairs_size, align_of::<(K, V)>());
        debug_assert!(!oflo, "capacity overflow");

        let buffer = self.hashes.ptr() as *mut u8;
        unsafe {
            RawBucket {
                hash_start: buffer as *mut HashUint,
                pair_start: buffer.offset(pairs_offset as isize) as *const (K, V),
                idx: index,
                _marker: marker::PhantomData,
            }
        }
    }

    /// Creates a new raw table from a given capacity. All buckets are
    /// initially empty.
    pub fn new(capacity: usize) -> Result<RawTable<K, V>, FailedAllocationError> {
        unsafe {
            let ret = RawTable::try_new_uninitialized(capacity)?;
            ptr::write_bytes(ret.hashes.ptr(), 0, capacity);
            Ok(ret)
        }
    }

    /// The hashtable's capacity, similar to a vector's.
    pub fn capacity(&self) -> usize {
        self.capacity_mask.wrapping_add(1)
    }

    /// The number of elements ever `put` in the hashtable, minus the number
    /// of elements ever `take`n.
    pub fn size(&self) -> usize {
        self.size
    }

    fn raw_buckets(&self) -> RawBuckets<K, V> {
        RawBuckets {
            raw: self.raw_bucket_at(0),
            elems_left: self.size,
            marker: marker::PhantomData,
        }
    }

    pub fn iter(&self) -> Iter<K, V> {
        Iter {
            iter: self.raw_buckets(),
        }
    }

    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        IterMut {
            iter: self.raw_buckets(),
            _marker: marker::PhantomData,
        }
    }

    pub fn into_iter(self) -> IntoIter<K, V> {
        let RawBuckets {
            raw, elems_left, ..
        } = self.raw_buckets();
        // Replace the marker regardless of lifetime bounds on parameters.
        IntoIter {
            iter: RawBuckets {
                raw,
                elems_left,
                marker: marker::PhantomData,
            },
            table: self,
        }
    }

    pub fn drain(&mut self) -> Drain<K, V> {
        let RawBuckets {
            raw, elems_left, ..
        } = self.raw_buckets();
        // Replace the marker regardless of lifetime bounds on parameters.
        Drain {
            iter: RawBuckets {
                raw,
                elems_left,
                marker: marker::PhantomData,
            },
            table: Shared::from(self),
            marker: marker::PhantomData,
        }
    }

    /// Drops buckets in reverse order. It leaves the table in an inconsistent
    /// state and should only be used for dropping the table's remaining
    /// entries. It's used in the implementation of Drop.
    unsafe fn rev_drop_buckets(&mut self) {
        // initialize the raw bucket past the end of the table
        let mut raw = self.raw_bucket_at(self.capacity());
        let mut elems_left = self.size;

        while elems_left != 0 {
            raw.idx -= 1;

            if *raw.hash() != EMPTY_BUCKET {
                elems_left -= 1;
                ptr::drop_in_place(raw.pair());
            }
        }
    }

    /// Set the table tag
    pub fn set_tag(&mut self, value: bool) {
        self.hashes.set_tag(value)
    }

    /// Get the table tag
    pub fn tag(&self) -> bool {
        self.hashes.tag()
    }
}

/// A raw iterator. The basis for some other iterators in this module. Although
/// this interface is safe, it's not used outside this module.
struct RawBuckets<'a, K, V> {
    raw: RawBucket<K, V>,
    elems_left: usize,

    // Strictly speaking, this should be &'a (K,V), but that would
    // require that K:'a, and we often use RawBuckets<'static...> for
    // move iterations, so that messes up a lot of other things. So
    // just use `&'a (K,V)` as this is not a publicly exposed type
    // anyway.
    marker: marker::PhantomData<&'a ()>,
}

// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, K, V> Clone for RawBuckets<'a, K, V> {
    fn clone(&self) -> RawBuckets<'a, K, V> {
        RawBuckets {
            raw: self.raw,
            elems_left: self.elems_left,
            marker: marker::PhantomData,
        }
    }
}

impl<'a, K, V> Iterator for RawBuckets<'a, K, V> {
    type Item = RawBucket<K, V>;

    fn next(&mut self) -> Option<RawBucket<K, V>> {
        if self.elems_left == 0 {
            return None;
        }

        loop {
            unsafe {
                let item = self.raw;
                self.raw.idx += 1;
                if *item.hash() != EMPTY_BUCKET {
                    self.elems_left -= 1;
                    return Some(item);
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.elems_left, Some(self.elems_left))
    }
}

impl<'a, K, V> ExactSizeIterator for RawBuckets<'a, K, V> {
    fn len(&self) -> usize {
        self.elems_left
    }
}

/// Iterator over shared references to entries in a table.
pub struct Iter<'a, K: 'a, V: 'a> {
    iter: RawBuckets<'a, K, V>,
}

unsafe impl<'a, K: Sync, V: Sync> Sync for Iter<'a, K, V> {}
unsafe impl<'a, K: Sync, V: Sync> Send for Iter<'a, K, V> {}

// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, K, V> Clone for Iter<'a, K, V> {
    fn clone(&self) -> Iter<'a, K, V> {
        Iter {
            iter: self.iter.clone(),
        }
    }
}

/// Iterator over mutable references to entries in a table.
pub struct IterMut<'a, K: 'a, V: 'a> {
    iter: RawBuckets<'a, K, V>,
    // To ensure invariance with respect to V
    _marker: marker::PhantomData<&'a mut V>,
}

unsafe impl<'a, K: Sync, V: Sync> Sync for IterMut<'a, K, V> {}
// Both K: Sync and K: Send are correct for IterMut's Send impl,
// but Send is the more useful bound
unsafe impl<'a, K: Send, V: Send> Send for IterMut<'a, K, V> {}

impl<'a, K: 'a, V: 'a> IterMut<'a, K, V> {
    pub fn iter(&self) -> Iter<K, V> {
        Iter {
            iter: self.iter.clone(),
        }
    }
}

/// Iterator over the entries in a table, consuming the table.
pub struct IntoIter<K, V> {
    table: RawTable<K, V>,
    iter: RawBuckets<'static, K, V>,
}

unsafe impl<K: Sync, V: Sync> Sync for IntoIter<K, V> {}
unsafe impl<K: Send, V: Send> Send for IntoIter<K, V> {}

impl<K, V> IntoIter<K, V> {
    pub fn iter(&self) -> Iter<K, V> {
        Iter {
            iter: self.iter.clone(),
        }
    }
}

/// Iterator over the entries in a table, clearing the table.
pub struct Drain<'a, K: 'static, V: 'static> {
    table: Shared<RawTable<K, V>>,
    iter: RawBuckets<'static, K, V>,
    marker: marker::PhantomData<&'a RawTable<K, V>>,
}

unsafe impl<'a, K: Sync, V: Sync> Sync for Drain<'a, K, V> {}
unsafe impl<'a, K: Send, V: Send> Send for Drain<'a, K, V> {}

impl<'a, K, V> Drain<'a, K, V> {
    pub fn iter(&self) -> Iter<K, V> {
        Iter {
            iter: self.iter.clone(),
        }
    }
}

impl<'a, K, V> Iterator for Iter<'a, K, V> {
    type Item = (&'a K, &'a V);

    fn next(&mut self) -> Option<(&'a K, &'a V)> {
        self.iter.next().map(|raw| unsafe {
            let pair_ptr = raw.pair();
            (&(*pair_ptr).0, &(*pair_ptr).1)
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl<'a, K, V> Iterator for IterMut<'a, K, V> {
    type Item = (&'a K, &'a mut V);

    fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
        self.iter.next().map(|raw| unsafe {
            let pair_ptr = raw.pair();
            (&(*pair_ptr).0, &mut (*pair_ptr).1)
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl<K, V> Iterator for IntoIter<K, V> {
    type Item = (SafeHash, K, V);

    fn next(&mut self) -> Option<(SafeHash, K, V)> {
        self.iter.next().map(|raw| {
            self.table.size -= 1;
            unsafe {
                let (k, v) = ptr::read(raw.pair());
                (SafeHash { hash: *raw.hash() }, k, v)
            }
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<K, V> ExactSizeIterator for IntoIter<K, V> {
    fn len(&self) -> usize {
        self.iter().len()
    }
}

impl<'a, K, V> Iterator for Drain<'a, K, V> {
    type Item = (SafeHash, K, V);

    #[inline]
    fn next(&mut self) -> Option<(SafeHash, K, V)> {
        self.iter.next().map(|raw| unsafe {
            self.table.as_mut().size -= 1;
            let (k, v) = ptr::read(raw.pair());
            (
                SafeHash {
                    hash: ptr::replace(&mut *raw.hash(), EMPTY_BUCKET),
                },
                k,
                v,
            )
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl<'a, K: 'static, V: 'static> Drop for Drain<'a, K, V> {
    fn drop(&mut self) {
        for _ in self {}
    }
}

impl<K: Clone, V: Clone> Clone for RawTable<K, V> {
    fn clone(&self) -> RawTable<K, V> {
        unsafe {
            let cap = self.capacity();
            let mut new_ht = RawTable::new_uninitialized(cap);

            let mut new_buckets = new_ht.raw_bucket_at(0);
            let mut buckets = self.raw_bucket_at(0);
            while buckets.idx < cap {
                *new_buckets.hash() = *buckets.hash();
                if *new_buckets.hash() != EMPTY_BUCKET {
                    let pair_ptr = buckets.pair();
                    let kv = ((*pair_ptr).0.clone(), (*pair_ptr).1.clone());
                    ptr::write(new_buckets.pair(), kv);
                }
                buckets.idx += 1;
                new_buckets.idx += 1;
            }

            new_ht.size = self.size();

            new_ht
        }
    }
}

// FORK NOTE: There may be lifetime errors that do not occur on std::HashMap
// since we removed the may_dangle (which allows more things to compile but has stricter guarantees).
// Generally we should be fine as long as no borrowed data is stuck into the map.
impl<K, V> Drop for RawTable<K, V> {
    fn drop(&mut self) {
        if self.capacity() == 0 {
            return;
        }

        // This is done in reverse because we've likely partially taken
        // some elements out with `.into_iter()` from the front.
        // Check if the size is 0, so we don't do a useless scan when
        // dropping empty tables such as on resize.
        // Also avoid double drop of elements that have been already moved out.
        unsafe {
            // FORK NOTE: Can't needs_drop on stable
            // if needs_drop::<(K, V)>() {
            // avoid linear runtime for types that don't need drop
            self.rev_drop_buckets();
            // }
        }

        let hashes_size = self.capacity() * size_of::<HashUint>();
        let pairs_size = self.capacity() * size_of::<(K, V)>();
        let (align, _, _, oflo) = calculate_allocation(
            hashes_size,
            align_of::<HashUint>(),
            pairs_size,
            align_of::<(K, V)>(),
        );

        debug_assert!(!oflo, "should be impossible");

        unsafe {
            dealloc(self.hashes.ptr() as *mut u8, align);
            // Remember how everything was allocated out of one buffer
            // during initialization? We only need one call to free here.
        }
    }
}