/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! The context within which style is calculated. #[cfg(feature = "servo")] use animation::Animation; #[cfg(feature = "servo")] use animation::PropertyAnimation; use app_units::Au; use bloom::StyleBloom; use data::{EagerPseudoStyles, ElementData}; use dom::{OpaqueNode, TNode, TElement, SendElement}; use euclid::ScaleFactor; use euclid::Size2D; use fnv::FnvHashMap; use font_metrics::FontMetricsProvider; use lru_cache::{Entry, LRUCache}; #[cfg(feature = "gecko")] use gecko_bindings::structs; use parallel::{STACK_SAFETY_MARGIN_KB, STYLE_THREAD_STACK_SIZE_KB}; #[cfg(feature = "servo")] use parking_lot::RwLock; use properties::ComputedValues; #[cfg(feature = "servo")] use properties::PropertyId; use rule_cache::RuleCache; use rule_tree::StrongRuleNode; use selector_parser::{EAGER_PSEUDO_COUNT, SnapshotMap}; use selectors::NthIndexCache; use selectors::matching::ElementSelectorFlags; use servo_arc::Arc; #[cfg(feature = "servo")] use servo_atoms::Atom; use shared_lock::StylesheetGuards; use sharing::StyleSharingCache; use std::fmt; use std::ops; #[cfg(feature = "servo")] use std::sync::Mutex; #[cfg(feature = "servo")] use std::sync::mpsc::Sender; use style_traits::CSSPixel; use style_traits::DevicePixel; #[cfg(feature = "servo")] use style_traits::SpeculativePainter; use stylist::Stylist; use thread_state; use time; use timer::Timer; use traversal::DomTraversal; use traversal_flags::TraversalFlags; pub use selectors::matching::QuirksMode; /// This structure is used to create a local style context from a shared one. #[cfg(feature = "servo")] pub struct ThreadLocalStyleContextCreationInfo { new_animations_sender: Sender, } #[cfg(feature = "servo")] impl ThreadLocalStyleContextCreationInfo { /// Trivially constructs a `ThreadLocalStyleContextCreationInfo`. pub fn new(animations_sender: Sender) -> Self { ThreadLocalStyleContextCreationInfo { new_animations_sender: animations_sender, } } } /// A global options structure for the style system. We use this instead of /// opts to abstract across Gecko and Servo. #[derive(Clone)] pub struct StyleSystemOptions { /// Whether the style sharing cache is disabled. pub disable_style_sharing_cache: bool, /// Whether we should dump statistics about the style system. pub dump_style_statistics: bool, /// The minimum number of elements that must be traversed to trigger a dump /// of style statistics. pub style_statistics_threshold: usize, } #[cfg(feature = "gecko")] fn get_env_bool(name: &str) -> bool { use std::env; match env::var(name) { Ok(s) => !s.is_empty(), Err(_) => false, } } const DEFAULT_STATISTICS_THRESHOLD: usize = 50; #[cfg(feature = "gecko")] fn get_env_usize(name: &str) -> Option { use std::env; env::var(name).ok().map(|s| { s.parse::().expect("Couldn't parse environmental variable as usize") }) } impl Default for StyleSystemOptions { #[cfg(feature = "servo")] fn default() -> Self { use servo_config::opts; StyleSystemOptions { disable_style_sharing_cache: opts::get().disable_share_style_cache, dump_style_statistics: opts::get().style_sharing_stats, style_statistics_threshold: DEFAULT_STATISTICS_THRESHOLD, } } #[cfg(feature = "gecko")] fn default() -> Self { StyleSystemOptions { disable_style_sharing_cache: get_env_bool("DISABLE_STYLE_SHARING_CACHE"), dump_style_statistics: get_env_bool("DUMP_STYLE_STATISTICS"), style_statistics_threshold: get_env_usize("STYLE_STATISTICS_THRESHOLD") .unwrap_or(DEFAULT_STATISTICS_THRESHOLD), } } } /// A shared style context. /// /// There's exactly one of these during a given restyle traversal, and it's /// shared among the worker threads. pub struct SharedStyleContext<'a> { /// The CSS selector stylist. pub stylist: &'a Stylist, /// Whether visited styles are enabled. /// /// They may be disabled when Gecko's pref layout.css.visited_links_enabled /// is false, or when in private browsing mode. pub visited_styles_enabled: bool, /// Configuration options. pub options: StyleSystemOptions, /// Guards for pre-acquired locks pub guards: StylesheetGuards<'a>, /// The current timer for transitions and animations. This is needed to test /// them. pub timer: Timer, /// Flags controlling how we traverse the tree. pub traversal_flags: TraversalFlags, /// A map with our snapshots in order to handle restyle hints. pub snapshot_map: &'a SnapshotMap, /// The animations that are currently running. #[cfg(feature = "servo")] pub running_animations: Arc>>>, /// The list of animations that have expired since the last style recalculation. #[cfg(feature = "servo")] pub expired_animations: Arc>>>, /// Paint worklets #[cfg(feature = "servo")] pub registered_speculative_painters: &'a RegisteredSpeculativePainters, /// Data needed to create the thread-local style context from the shared one. #[cfg(feature = "servo")] pub local_context_creation_data: Mutex, } impl<'a> SharedStyleContext<'a> { /// Return a suitable viewport size in order to be used for viewport units. pub fn viewport_size(&self) -> Size2D { self.stylist.device().au_viewport_size() } /// The device pixel ratio pub fn device_pixel_ratio(&self) -> ScaleFactor { self.stylist.device().device_pixel_ratio() } /// The quirks mode of the document. pub fn quirks_mode(&self) -> QuirksMode { self.stylist.quirks_mode() } } /// The structure holds various intermediate inputs that are eventually used by /// by the cascade. /// /// The matching and cascading process stores them in this format temporarily /// within the `CurrentElementInfo`. At the end of the cascade, they are folded /// down into the main `ComputedValues` to reduce memory usage per element while /// still remaining accessible. #[derive(Clone, Default)] pub struct CascadeInputs { /// The rule node representing the ordered list of rules matched for this /// node. pub rules: Option, /// The rule node representing the ordered list of rules matched for this /// node if visited, only computed if there's a relevant link for this /// element. A element's "relevant link" is the element being matched if it /// is a link or the nearest ancestor link. pub visited_rules: Option, } impl CascadeInputs { /// Construct inputs from previous cascade results, if any. pub fn new_from_style(style: &ComputedValues) -> Self { CascadeInputs { rules: style.rules.clone(), visited_rules: style.visited_style().and_then(|v| v.rules.clone()), } } } // We manually implement Debug for CascadeInputs so that we can avoid the // verbose stringification of ComputedValues for normal logging. impl fmt::Debug for CascadeInputs { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "CascadeInputs {{ rules: {:?}, visited_rules: {:?}, .. }}", self.rules, self.visited_rules) } } /// A list of cascade inputs for eagerly-cascaded pseudo-elements. /// The list is stored inline. #[derive(Debug)] pub struct EagerPseudoCascadeInputs(Option<[Option; EAGER_PSEUDO_COUNT]>); // Manually implement `Clone` here because the derived impl of `Clone` for // array types assumes the value inside is `Copy`. impl Clone for EagerPseudoCascadeInputs { fn clone(&self) -> Self { if self.0.is_none() { return EagerPseudoCascadeInputs(None) } let self_inputs = self.0.as_ref().unwrap(); let mut inputs: [Option; EAGER_PSEUDO_COUNT] = Default::default(); for i in 0..EAGER_PSEUDO_COUNT { inputs[i] = self_inputs[i].clone(); } EagerPseudoCascadeInputs(Some(inputs)) } } impl EagerPseudoCascadeInputs { /// Construct inputs from previous cascade results, if any. fn new_from_style(styles: &EagerPseudoStyles) -> Self { EagerPseudoCascadeInputs(styles.as_optional_array().map(|styles| { let mut inputs: [Option; EAGER_PSEUDO_COUNT] = Default::default(); for i in 0..EAGER_PSEUDO_COUNT { inputs[i] = styles[i].as_ref().map(|s| CascadeInputs::new_from_style(s)); } inputs })) } /// Returns the list of rules, if they exist. pub fn into_array(self) -> Option<[Option; EAGER_PSEUDO_COUNT]> { self.0 } } /// The cascade inputs associated with a node, including those for any /// pseudo-elements. /// /// The matching and cascading process stores them in this format temporarily /// within the `CurrentElementInfo`. At the end of the cascade, they are folded /// down into the main `ComputedValues` to reduce memory usage per element while /// still remaining accessible. #[derive(Clone, Debug)] pub struct ElementCascadeInputs { /// The element's cascade inputs. pub primary: CascadeInputs, /// A list of the inputs for the element's eagerly-cascaded pseudo-elements. pub pseudos: EagerPseudoCascadeInputs, } impl ElementCascadeInputs { /// Construct inputs from previous cascade results, if any. pub fn new_from_element_data(data: &ElementData) -> Self { debug_assert!(data.has_styles()); ElementCascadeInputs { primary: CascadeInputs::new_from_style(data.styles.primary()), pseudos: EagerPseudoCascadeInputs::new_from_style(&data.styles.pseudos), } } } /// Information about the current element being processed. We group this /// together into a single struct within ThreadLocalStyleContext so that we can /// instantiate and destroy it easily at the beginning and end of element /// processing. pub struct CurrentElementInfo { /// The element being processed. Currently we use an OpaqueNode since we /// only use this for identity checks, but we could use SendElement if there /// were a good reason to. element: OpaqueNode, /// Whether the element is being styled for the first time. is_initial_style: bool, /// A Vec of possibly expired animations. Used only by Servo. #[allow(dead_code)] #[cfg(feature = "servo")] pub possibly_expired_animations: Vec, } /// Statistics gathered during the traversal. We gather statistics on each /// thread and then combine them after the threads join via the Add /// implementation below. #[derive(Default)] pub struct TraversalStatistics { /// The total number of elements traversed. pub elements_traversed: u32, /// The number of elements where has_styles() went from false to true. pub elements_styled: u32, /// The number of elements for which we performed selector matching. pub elements_matched: u32, /// The number of cache hits from the StyleSharingCache. pub styles_shared: u32, /// The number of styles reused via rule node comparison from the /// StyleSharingCache. pub styles_reused: u32, /// The number of selectors in the stylist. pub selectors: u32, /// The number of revalidation selectors. pub revalidation_selectors: u32, /// The number of state/attr dependencies in the dependency set. pub dependency_selectors: u32, /// The number of declarations in the stylist. pub declarations: u32, /// The number of times the stylist was rebuilt. pub stylist_rebuilds: u32, /// Time spent in the traversal, in milliseconds. pub traversal_time_ms: f64, /// Whether this was a parallel traversal. pub is_parallel: Option, /// Whether this is a "large" traversal. pub is_large: Option, } /// Implementation of Add to aggregate statistics across different threads. impl<'a> ops::Add for &'a TraversalStatistics { type Output = TraversalStatistics; fn add(self, other: Self) -> TraversalStatistics { debug_assert!(self.traversal_time_ms == 0.0 && other.traversal_time_ms == 0.0, "traversal_time_ms should be set at the end by the caller"); debug_assert!(self.selectors == 0, "set at the end"); debug_assert!(self.revalidation_selectors == 0, "set at the end"); debug_assert!(self.dependency_selectors == 0, "set at the end"); debug_assert!(self.declarations == 0, "set at the end"); debug_assert!(self.stylist_rebuilds == 0, "set at the end"); TraversalStatistics { elements_traversed: self.elements_traversed + other.elements_traversed, elements_styled: self.elements_styled + other.elements_styled, elements_matched: self.elements_matched + other.elements_matched, styles_shared: self.styles_shared + other.styles_shared, styles_reused: self.styles_reused + other.styles_reused, selectors: 0, revalidation_selectors: 0, dependency_selectors: 0, declarations: 0, stylist_rebuilds: 0, traversal_time_ms: 0.0, is_parallel: None, is_large: None, } } } /// Format the statistics in a way that the performance test harness understands. /// See https://bugzilla.mozilla.org/show_bug.cgi?id=1331856#c2 impl fmt::Display for TraversalStatistics { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { debug_assert!(self.traversal_time_ms != 0.0, "should have set traversal time"); writeln!(f, "[PERF] perf block start")?; writeln!(f, "[PERF],traversal,{}", if self.is_parallel.unwrap() { "parallel" } else { "sequential" })?; writeln!(f, "[PERF],elements_traversed,{}", self.elements_traversed)?; writeln!(f, "[PERF],elements_styled,{}", self.elements_styled)?; writeln!(f, "[PERF],elements_matched,{}", self.elements_matched)?; writeln!(f, "[PERF],styles_shared,{}", self.styles_shared)?; writeln!(f, "[PERF],styles_reused,{}", self.styles_reused)?; writeln!(f, "[PERF],selectors,{}", self.selectors)?; writeln!(f, "[PERF],revalidation_selectors,{}", self.revalidation_selectors)?; writeln!(f, "[PERF],dependency_selectors,{}", self.dependency_selectors)?; writeln!(f, "[PERF],declarations,{}", self.declarations)?; writeln!(f, "[PERF],stylist_rebuilds,{}", self.stylist_rebuilds)?; writeln!(f, "[PERF],traversal_time_ms,{}", self.traversal_time_ms)?; writeln!(f, "[PERF] perf block end") } } impl TraversalStatistics { /// Computes the traversal time given the start time in seconds. pub fn finish(&mut self, traversal: &D, parallel: bool, start: f64) where E: TElement, D: DomTraversal, { let threshold = traversal.shared_context().options.style_statistics_threshold; let stylist = traversal.shared_context().stylist; self.is_parallel = Some(parallel); self.is_large = Some(self.elements_traversed as usize >= threshold); self.traversal_time_ms = (time::precise_time_s() - start) * 1000.0; self.selectors = stylist.num_selectors() as u32; self.revalidation_selectors = stylist.num_revalidation_selectors() as u32; self.dependency_selectors = stylist.num_invalidations() as u32; self.declarations = stylist.num_declarations() as u32; self.stylist_rebuilds = stylist.num_rebuilds() as u32; } /// Returns whether this traversal is 'large' in order to avoid console spam /// from lots of tiny traversals. pub fn is_large_traversal(&self) -> bool { self.is_large.unwrap() } } #[cfg(feature = "gecko")] bitflags! { /// Represents which tasks are performed in a SequentialTask of /// UpdateAnimations which is a result of normal restyle. pub flags UpdateAnimationsTasks: u8 { /// Update CSS Animations. const CSS_ANIMATIONS = structs::UpdateAnimationsTasks_CSSAnimations, /// Update CSS Transitions. const CSS_TRANSITIONS = structs::UpdateAnimationsTasks_CSSTransitions, /// Update effect properties. const EFFECT_PROPERTIES = structs::UpdateAnimationsTasks_EffectProperties, /// Update animation cacade results for animations running on the compositor. const CASCADE_RESULTS = structs::UpdateAnimationsTasks_CascadeResults, } } #[cfg(feature = "gecko")] bitflags! { /// Represents which tasks are performed in a SequentialTask as a result of /// animation-only restyle. pub flags PostAnimationTasks: u8 { /// Display property was changed from none in animation-only restyle so /// that we need to resolve styles for descendants in a subsequent /// normal restyle. const DISPLAY_CHANGED_FROM_NONE_FOR_SMIL = 0x01, } } /// A task to be run in sequential mode on the parent (non-worker) thread. This /// is used by the style system to queue up work which is not safe to do during /// the parallel traversal. pub enum SequentialTask { /// Entry to avoid an unused type parameter error on servo. Unused(SendElement), /// Performs one of a number of possible tasks related to updating animations based on the /// |tasks| field. These include updating CSS animations/transitions that changed as part /// of the non-animation style traversal, and updating the computed effect properties. #[cfg(feature = "gecko")] UpdateAnimations { /// The target element or pseudo-element. el: SendElement, /// The before-change style for transitions. We use before-change style as the initial /// value of its Keyframe. Required if |tasks| includes CSSTransitions. before_change_style: Option>, /// The tasks which are performed in this SequentialTask. tasks: UpdateAnimationsTasks }, /// Performs one of a number of possible tasks as a result of animation-only restyle. /// Currently we do only process for resolving descendant elements that were display:none /// subtree for SMIL animation. #[cfg(feature = "gecko")] PostAnimation { /// The target element. el: SendElement, /// The tasks which are performed in this SequentialTask. tasks: PostAnimationTasks }, } impl SequentialTask { /// Executes this task. pub fn execute(self) { use self::SequentialTask::*; debug_assert!(thread_state::get() == thread_state::LAYOUT); match self { Unused(_) => unreachable!(), #[cfg(feature = "gecko")] UpdateAnimations { el, before_change_style, tasks } => { unsafe { el.update_animations(before_change_style, tasks) }; } #[cfg(feature = "gecko")] PostAnimation { el, tasks } => { unsafe { el.process_post_animation(tasks) }; } } } /// Creates a task to update various animation-related state on /// a given (pseudo-)element. #[cfg(feature = "gecko")] pub fn update_animations(el: E, before_change_style: Option>, tasks: UpdateAnimationsTasks) -> Self { use self::SequentialTask::*; UpdateAnimations { el: unsafe { SendElement::new(el) }, before_change_style: before_change_style, tasks: tasks, } } /// Creates a task to do post-process for a given element as a result of /// animation-only restyle. #[cfg(feature = "gecko")] pub fn process_post_animation(el: E, tasks: PostAnimationTasks) -> Self { use self::SequentialTask::*; PostAnimation { el: unsafe { SendElement::new(el) }, tasks: tasks, } } } type CacheItem = (SendElement, ElementSelectorFlags); /// Map from Elements to ElementSelectorFlags. Used to defer applying selector /// flags until after the traversal. pub struct SelectorFlagsMap { /// The hashmap storing the flags to apply. map: FnvHashMap, ElementSelectorFlags>, /// An LRU cache to avoid hashmap lookups, which can be slow if the map /// gets big. cache: LRUCache, [Entry>; 4 + 1]>, } #[cfg(debug_assertions)] impl Drop for SelectorFlagsMap { fn drop(&mut self) { debug_assert!(self.map.is_empty()); } } impl SelectorFlagsMap { /// Creates a new empty SelectorFlagsMap. pub fn new() -> Self { SelectorFlagsMap { map: FnvHashMap::default(), cache: LRUCache::default(), } } /// Inserts some flags into the map for a given element. pub fn insert_flags(&mut self, element: E, flags: ElementSelectorFlags) { let el = unsafe { SendElement::new(element) }; // Check the cache. If the flags have already been noted, we're done. if self.cache.iter().find(|&(_, ref x)| x.0 == el) .map_or(ElementSelectorFlags::empty(), |(_, x)| x.1) .contains(flags) { return; } let f = self.map.entry(el).or_insert(ElementSelectorFlags::empty()); *f |= flags; // Insert into the cache. We don't worry about duplicate entries, // which lets us avoid reshuffling. self.cache.insert((unsafe { SendElement::new(element) }, *f)) } /// Applies the flags. Must be called on the main thread. pub fn apply_flags(&mut self) { debug_assert!(thread_state::get() == thread_state::LAYOUT); for (el, flags) in self.map.drain() { unsafe { el.set_selector_flags(flags); } } } } /// A list of SequentialTasks that get executed on Drop. pub struct SequentialTaskList(Vec>) where E: TElement; impl ops::Deref for SequentialTaskList where E: TElement, { type Target = Vec>; fn deref(&self) -> &Self::Target { &self.0 } } impl ops::DerefMut for SequentialTaskList where E: TElement, { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } impl Drop for SequentialTaskList where E: TElement, { fn drop(&mut self) { debug_assert!(thread_state::get() == thread_state::LAYOUT); for task in self.0.drain(..) { task.execute() } } } /// A helper type for stack limit checking. This assumes that stacks grow /// down, which is true for all non-ancient CPU architectures. pub struct StackLimitChecker { lower_limit: usize } impl StackLimitChecker { /// Create a new limit checker, for this thread, allowing further use /// of up to |stack_size| bytes beyond (below) the current stack pointer. #[inline(never)] pub fn new(stack_size_limit: usize) -> Self { StackLimitChecker { lower_limit: StackLimitChecker::get_sp() - stack_size_limit } } /// Checks whether the previously stored stack limit has now been exceeded. #[inline(never)] pub fn limit_exceeded(&self) -> bool { let curr_sp = StackLimitChecker::get_sp(); // Do some sanity-checking to ensure that our invariants hold, even in // the case where we've exceeded the soft limit. // // The correctness of depends on the assumption that no stack wraps // around the end of the address space. if cfg!(debug_assertions) { // Compute the actual bottom of the stack by subtracting our safety // margin from our soft limit. Note that this will be slightly below // the actual bottom of the stack, because there are a few initial // frames on the stack before we do the measurement that computes // the limit. let stack_bottom = self.lower_limit - STACK_SAFETY_MARGIN_KB * 1024; // The bottom of the stack should be below the current sp. If it // isn't, that means we've either waited too long to check the limit // and burned through our safety margin (in which case we probably // would have segfaulted by now), or we're using a limit computed for // a different thread. debug_assert!(stack_bottom < curr_sp); // Compute the distance between the current sp and the bottom of // the stack, and compare it against the current stack. It should be // no further from us than the total stack size. We allow some slop // to handle the fact that stack_bottom is a bit further than the // bottom of the stack, as discussed above. let distance_to_stack_bottom = curr_sp - stack_bottom; let max_allowable_distance = (STYLE_THREAD_STACK_SIZE_KB + 10) * 1024; debug_assert!(distance_to_stack_bottom <= max_allowable_distance); } // The actual bounds check. curr_sp <= self.lower_limit } // Technically, rustc can optimize this away, but shouldn't for now. // We should fix this once black_box is stable. #[inline(always)] fn get_sp() -> usize { let mut foo: usize = 42; (&mut foo as *mut usize) as usize } } /// A thread-local style context. /// /// This context contains data that needs to be used during restyling, but is /// not required to be unique among worker threads, so we create one per worker /// thread in order to be able to mutate it without locking. pub struct ThreadLocalStyleContext { /// A cache to share style among siblings. pub sharing_cache: StyleSharingCache, /// A cache from matched properties to elements that match those. pub rule_cache: RuleCache, /// The bloom filter used to fast-reject selector-matching. pub bloom_filter: StyleBloom, /// A channel on which new animations that have been triggered by style /// recalculation can be sent. #[cfg(feature = "servo")] pub new_animations_sender: Sender, /// A set of tasks to be run (on the parent thread) in sequential mode after /// the rest of the styling is complete. This is useful for /// infrequently-needed non-threadsafe operations. /// /// It's important that goes after the style sharing cache and the bloom /// filter, to ensure they're dropped before we execute the tasks, which /// could create another ThreadLocalStyleContext for style computation. pub tasks: SequentialTaskList, /// ElementSelectorFlags that need to be applied after the traversal is /// complete. This map is used in cases where the matching algorithm needs /// to set flags on elements it doesn't have exclusive access to (i.e. other /// than the current element). pub selector_flags: SelectorFlagsMap, /// Statistics about the traversal. pub statistics: TraversalStatistics, /// Information related to the current element, non-None during processing. pub current_element_info: Option, /// The struct used to compute and cache font metrics from style /// for evaluation of the font-relative em/ch units and font-size pub font_metrics_provider: E::FontMetricsProvider, /// A checker used to ensure that parallel.rs does not recurse indefinitely /// even on arbitrarily deep trees. See Gecko bug 1376883. pub stack_limit_checker: StackLimitChecker, /// A cache for nth-index-like selectors. pub nth_index_cache: NthIndexCache, } impl ThreadLocalStyleContext { /// Creates a new `ThreadLocalStyleContext` from a shared one. #[cfg(feature = "servo")] pub fn new(shared: &SharedStyleContext) -> Self { ThreadLocalStyleContext { sharing_cache: StyleSharingCache::new(), rule_cache: RuleCache::new(), bloom_filter: StyleBloom::new(), new_animations_sender: shared.local_context_creation_data.lock().unwrap().new_animations_sender.clone(), tasks: SequentialTaskList(Vec::new()), selector_flags: SelectorFlagsMap::new(), statistics: TraversalStatistics::default(), current_element_info: None, font_metrics_provider: E::FontMetricsProvider::create_from(shared), stack_limit_checker: StackLimitChecker::new( (STYLE_THREAD_STACK_SIZE_KB - STACK_SAFETY_MARGIN_KB) * 1024), nth_index_cache: NthIndexCache::default(), } } #[cfg(feature = "gecko")] /// Creates a new `ThreadLocalStyleContext` from a shared one. pub fn new(shared: &SharedStyleContext) -> Self { ThreadLocalStyleContext { sharing_cache: StyleSharingCache::new(), rule_cache: RuleCache::new(), bloom_filter: StyleBloom::new(), tasks: SequentialTaskList(Vec::new()), selector_flags: SelectorFlagsMap::new(), statistics: TraversalStatistics::default(), current_element_info: None, font_metrics_provider: E::FontMetricsProvider::create_from(shared), stack_limit_checker: StackLimitChecker::new( (STYLE_THREAD_STACK_SIZE_KB - STACK_SAFETY_MARGIN_KB) * 1024), nth_index_cache: NthIndexCache::default(), } } #[cfg(feature = "gecko")] /// Notes when the style system starts traversing an element. pub fn begin_element(&mut self, element: E, data: &ElementData) { debug_assert!(self.current_element_info.is_none()); self.current_element_info = Some(CurrentElementInfo { element: element.as_node().opaque(), is_initial_style: !data.has_styles(), }); } #[cfg(feature = "servo")] /// Notes when the style system starts traversing an element. pub fn begin_element(&mut self, element: E, data: &ElementData) { debug_assert!(self.current_element_info.is_none()); self.current_element_info = Some(CurrentElementInfo { element: element.as_node().opaque(), is_initial_style: !data.has_styles(), possibly_expired_animations: Vec::new(), }); } /// Notes when the style system finishes traversing an element. pub fn end_element(&mut self, element: E) { debug_assert!(self.current_element_info.is_some()); debug_assert!(self.current_element_info.as_ref().unwrap().element == element.as_node().opaque()); self.current_element_info = None; } /// Returns true if the current element being traversed is being styled for /// the first time. /// /// Panics if called while no element is being traversed. pub fn is_initial_style(&self) -> bool { self.current_element_info.as_ref().unwrap().is_initial_style } } impl Drop for ThreadLocalStyleContext { fn drop(&mut self) { debug_assert!(self.current_element_info.is_none()); debug_assert!(thread_state::get() == thread_state::LAYOUT); // Apply any slow selector flags that need to be set on parents. self.selector_flags.apply_flags(); } } /// A `StyleContext` is just a simple container for a immutable reference to a /// shared style context, and a mutable reference to a local one. pub struct StyleContext<'a, E: TElement + 'a> { /// The shared style context reference. pub shared: &'a SharedStyleContext<'a>, /// The thread-local style context (mutable) reference. pub thread_local: &'a mut ThreadLocalStyleContext, } /// A registered painter #[cfg(feature = "servo")] pub trait RegisteredSpeculativePainter: SpeculativePainter { /// The name it was registered with fn name(&self) -> Atom; /// The properties it was registered with fn properties(&self) -> &FnvHashMap; } /// A set of registered painters #[cfg(feature = "servo")] pub trait RegisteredSpeculativePainters: Sync { /// Look up a speculative painter fn get(&self, name: &Atom) -> Option<&RegisteredSpeculativePainter>; }