/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Parametric Bézier curves. //! //! This is based on `WebCore/platform/graphics/UnitBezier.h` in WebKit. use euclid::point::Point2D; const NEWTON_METHOD_ITERATIONS: u8 = 8; pub struct Bezier { ax: f64, bx: f64, cx: f64, ay: f64, by: f64, cy: f64, } impl Bezier { #[inline] pub fn new(p1: Point2D, p2: Point2D) -> Bezier { let cx = 3.0 * p1.x; let bx = 3.0 * (p2.x - p1.x) - cx; let cy = 3.0 * p1.y; let by = 3.0 * (p2.y - p1.y) - cy; Bezier { ax: 1.0 - cx - bx, bx: bx, cx: cx, ay: 1.0 - cy - by, by: by, cy: cy, } } #[inline] fn sample_curve_x(&self, t: f64) -> f64 { // ax * t^3 + bx * t^2 + cx * t ((self.ax * t + self.bx) * t + self.cx) * t } #[inline] fn sample_curve_y(&self, t: f64) -> f64 { ((self.ay * t + self.by) * t + self.cy) * t } #[inline] fn sample_curve_derivative_x(&self, t: f64) -> f64 { (3.0 * self.ax * t + 2.0 * self.bx) * t + self.cx } #[inline] fn solve_curve_x(&self, x: f64, epsilon: f64) -> f64 { // Fast path: Use Newton's method. let mut t = x; for _ in 0..NEWTON_METHOD_ITERATIONS { let x2 = self.sample_curve_x(t); if x2.approx_eq(x, epsilon) { return t } let dx = self.sample_curve_derivative_x(t); if dx.approx_eq(0.0, 1e-6) { break } t -= (x2 - x) / dx; } // Slow path: Use bisection. let (mut lo, mut hi, mut t) = (0.0, 1.0, x); if t < lo { return lo } if t > hi { return hi } while lo < hi { let x2 = self.sample_curve_x(t); if x2.approx_eq(x, epsilon) { return t } if x > x2 { lo = t } else { hi = t } t = (hi - lo) / 2.0 + lo } t } #[inline] pub fn solve(&self, x: f64, epsilon: f64) -> f64 { self.sample_curve_y(self.solve_curve_x(x, epsilon)) } } trait ApproxEq { fn approx_eq(self, value: Self, epsilon: Self) -> bool; } impl ApproxEq for f64 { #[inline] fn approx_eq(self, value: f64, epsilon: f64) -> bool { (self - value).abs() < epsilon } }