/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use attr::{ParsedAttrSelectorOperation, AttrSelectorOperation, NamespaceConstraint}; use bloom::{BLOOM_HASH_MASK, BloomFilter}; use nth_index_cache::NthIndexCacheInner; use parser::{AncestorHashes, Combinator, Component, LocalName}; use parser::{Selector, SelectorImpl, SelectorIter, SelectorList}; use std::borrow::Borrow; use tree::Element; pub use context::*; // The bloom filter for descendant CSS selectors will have a <1% false // positive rate until it has this many selectors in it, then it will // rapidly increase. pub static RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE: usize = 4096; bitflags! { /// Set of flags that are set on either the element or its parent (depending /// on the flag) if the element could potentially match a selector. pub flags ElementSelectorFlags: usize { /// When a child is added or removed from the parent, all the children /// must be restyled, because they may match :nth-last-child, /// :last-of-type, :nth-last-of-type, or :only-of-type. const HAS_SLOW_SELECTOR = 1 << 0, /// When a child is added or removed from the parent, any later /// children must be restyled, because they may match :nth-child, /// :first-of-type, or :nth-of-type. const HAS_SLOW_SELECTOR_LATER_SIBLINGS = 1 << 1, /// When a child is added or removed from the parent, the first and /// last children must be restyled, because they may match :first-child, /// :last-child, or :only-child. const HAS_EDGE_CHILD_SELECTOR = 1 << 2, /// The element has an empty selector, so when a child is appended we /// might need to restyle the parent completely. const HAS_EMPTY_SELECTOR = 1 << 3, } } impl ElementSelectorFlags { /// Returns the subset of flags that apply to the element. pub fn for_self(self) -> ElementSelectorFlags { self & (HAS_EMPTY_SELECTOR) } /// Returns the subset of flags that apply to the parent. pub fn for_parent(self) -> ElementSelectorFlags { self & (HAS_SLOW_SELECTOR | HAS_SLOW_SELECTOR_LATER_SIBLINGS | HAS_EDGE_CHILD_SELECTOR) } } /// Holds per-compound-selector data. struct LocalMatchingContext<'a, 'b: 'a, Impl: SelectorImpl> { shared: &'a mut MatchingContext<'b, Impl>, matches_hover_and_active_quirk: bool, } pub fn matches_selector_list( selector_list: &SelectorList, element: &E, context: &mut MatchingContext, ) -> bool where E: Element { selector_list.0.iter().any(|selector| { matches_selector(selector, 0, None, element, context, &mut |_, _| {}) }) } #[inline(always)] fn may_match(hashes: &AncestorHashes, bf: &BloomFilter) -> bool where E: Element, { // Check the first three hashes. Note that we can check for zero before // masking off the high bits, since if any of the first three hashes is // zero the fourth will be as well. We also take care to avoid the // special-case complexity of the fourth hash until we actually reach it, // because we usually don't. // // To be clear: this is all extremely hot. for i in 0..3 { let packed = hashes.packed_hashes[i]; if packed == 0 { // No more hashes left - unable to fast-reject. return true; } if !bf.might_contain_hash(packed & BLOOM_HASH_MASK) { // Hooray! We fast-rejected on this hash. return false; } } // Now do the slighty-more-complex work of synthesizing the fourth hash, // and check it against the filter if it exists. let fourth = hashes.fourth_hash(); fourth == 0 || bf.might_contain_hash(fourth) } /// Tracks whether we are currently looking for relevant links for a given /// complex selector. A "relevant link" is the element being matched if it is a /// link or the nearest ancestor link. /// /// `matches_complex_selector` creates a new instance of this for each complex /// selector we try to match for an element. This is done because `is_visited` /// and `is_unvisited` are based on relevant link state of only the current /// complex selector being matched (not the global relevant link status for all /// selectors in `MatchingContext`). #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum RelevantLinkStatus { /// Looking for a possible relevant link. This is the initial mode when /// matching a selector. Looking, /// Not looking for a relevant link. We transition to this mode if we /// encounter a sibiling combinator (since only ancestor combinators are /// allowed for this purpose). NotLooking, /// Found a relevant link for the element being matched. Found, } impl Default for RelevantLinkStatus { fn default() -> Self { RelevantLinkStatus::NotLooking } } impl RelevantLinkStatus { /// If we found the relevant link for this element, record that in the /// overall matching context for the element as a whole and stop looking for /// addtional links. fn examine_potential_link( &self, element: &E, context: &mut MatchingContext, ) -> RelevantLinkStatus where E: Element, { // If a relevant link was previously found, we no longer want to look // for links. Only the nearest ancestor link is considered relevant. if *self != RelevantLinkStatus::Looking { return RelevantLinkStatus::NotLooking } if !element.is_link() { return *self } // We found a relevant link. Record this in the `MatchingContext`, // where we track whether one was found for _any_ selector (meaning // this field might already be true from a previous selector). context.relevant_link_found = true; // Also return `Found` to update the relevant link status for _this_ // specific selector's matching process. RelevantLinkStatus::Found } /// Returns whether an element is considered visited for the purposes of /// matching. This is true only if the element is a link, an relevant link /// exists for the element, and the visited handling mode is set to accept /// relevant links as visited. pub fn is_visited( &self, element: &E, context: &MatchingContext, ) -> bool where E: Element, { if !element.is_link() { return false } if context.visited_handling == VisitedHandlingMode::AllLinksVisitedAndUnvisited { return true; } // Non-relevant links are always unvisited. if *self != RelevantLinkStatus::Found { return false } context.visited_handling == VisitedHandlingMode::RelevantLinkVisited } /// Returns whether an element is considered unvisited for the purposes of /// matching. Assuming the element is a link, this is always true for /// non-relevant links, since only relevant links can potentially be treated /// as visited. If this is a relevant link, then is it unvisited if the /// visited handling mode is set to treat all links as unvisted (including /// relevant links). pub fn is_unvisited( &self, element: &E, context: &MatchingContext ) -> bool where E: Element, { if !element.is_link() { return false } if context.visited_handling == VisitedHandlingMode::AllLinksVisitedAndUnvisited { return true; } // Non-relevant links are always unvisited. if *self != RelevantLinkStatus::Found { return true } context.visited_handling == VisitedHandlingMode::AllLinksUnvisited } } /// A result of selector matching, includes 3 failure types, /// /// NotMatchedAndRestartFromClosestLaterSibling /// NotMatchedAndRestartFromClosestDescendant /// NotMatchedGlobally /// /// When NotMatchedGlobally appears, stop selector matching completely since /// the succeeding selectors never matches. /// It is raised when /// Child combinator cannot find the candidate element. /// Descendant combinator cannot find the candidate element. /// /// When NotMatchedAndRestartFromClosestDescendant appears, the selector /// matching does backtracking and restarts from the closest Descendant /// combinator. /// It is raised when /// NextSibling combinator cannot find the candidate element. /// LaterSibling combinator cannot find the candidate element. /// Child combinator doesn't match on the found element. /// /// When NotMatchedAndRestartFromClosestLaterSibling appears, the selector /// matching does backtracking and restarts from the closest LaterSibling /// combinator. /// It is raised when /// NextSibling combinator doesn't match on the found element. /// /// For example, when the selector "d1 d2 a" is provided and we cannot *find* /// an appropriate ancestor element for "d1", this selector matching raises /// NotMatchedGlobally since even if "d2" is moved to more upper element, the /// candidates for "d1" becomes less than before and d1 . /// /// The next example is siblings. When the selector "b1 + b2 ~ d1 a" is /// provided and we cannot *find* an appropriate brother element for b1, /// the selector matching raises NotMatchedAndRestartFromClosestDescendant. /// The selectors ("b1 + b2 ~") doesn't match and matching restart from "d1". /// /// The additional example is child and sibling. When the selector /// "b1 + c1 > b2 ~ d1 a" is provided and the selector "b1" doesn't match on /// the element, this "b1" raises NotMatchedAndRestartFromClosestLaterSibling. /// However since the selector "c1" raises /// NotMatchedAndRestartFromClosestDescendant. So the selector /// "b1 + c1 > b2 ~ " doesn't match and restart matching from "d1". #[derive(Clone, Copy, Eq, PartialEq)] enum SelectorMatchingResult { Matched, NotMatchedAndRestartFromClosestLaterSibling, NotMatchedAndRestartFromClosestDescendant, NotMatchedGlobally, } /// Matches a selector, fast-rejecting against a bloom filter. /// /// We accept an offset to allow consumers to represent and match against /// partial selectors (indexed from the right). We use this API design, rather /// than having the callers pass a SelectorIter, because creating a SelectorIter /// requires dereferencing the selector to get the length, which adds an /// unncessary cache miss for cases when we can fast-reject with AncestorHashes /// (which the caller can store inline with the selector pointer). #[inline(always)] pub fn matches_selector( selector: &Selector, offset: usize, hashes: Option<&AncestorHashes>, element: &E, context: &mut MatchingContext, flags_setter: &mut F, ) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { // Use the bloom filter to fast-reject. if let Some(hashes) = hashes { if let Some(filter) = context.bloom_filter { if !may_match::(hashes, filter) { return false; } } } matches_complex_selector(selector.iter_from(offset), element, context, flags_setter) } /// Whether a compound selector matched, and whether it was the rightmost /// selector inside the complex selector. pub enum CompoundSelectorMatchingResult { /// The selector was fully matched. FullyMatched, /// The compound selector matched, and the next combinator offset is /// `next_combinator_offset`. Matched { next_combinator_offset: usize, }, /// The selector didn't match. NotMatched, } /// Matches a compound selector belonging to `selector`, starting at offset /// `from_offset`, matching left to right. /// /// Requires that `from_offset` points to a `Combinator`. /// /// NOTE(emilio): This doesn't allow to match in the leftmost sequence of the /// complex selector, but it happens to be the case we don't need it. pub fn matches_compound_selector( selector: &Selector, mut from_offset: usize, context: &mut MatchingContext, element: &E, ) -> CompoundSelectorMatchingResult where E: Element { debug_assert_ne!(from_offset, 0); if cfg!(debug_assertions) { selector.combinator_at_parse_order(from_offset - 1); // This asserts. } let mut local_context = LocalMatchingContext { shared: context, matches_hover_and_active_quirk: false, }; for component in selector.iter_raw_parse_order_from(from_offset) { if matches!(*component, Component::Combinator(..)) { debug_assert_ne!(from_offset, 0, "Selector started with a combinator?"); return CompoundSelectorMatchingResult::Matched { next_combinator_offset: from_offset, } } if !matches_simple_selector( component, element, &mut local_context, &RelevantLinkStatus::NotLooking, &mut |_, _| {}) { return CompoundSelectorMatchingResult::NotMatched; } from_offset += 1; } CompoundSelectorMatchingResult::FullyMatched } /// Matches a complex selector. pub fn matches_complex_selector( mut iter: SelectorIter, element: &E, context: &mut MatchingContext, flags_setter: &mut F, ) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { // If this is the special pseudo-element mode, consume the ::pseudo-element // before proceeding, since the caller has already handled that part. if context.nesting_level == 0 && context.matching_mode == MatchingMode::ForStatelessPseudoElement { // Consume the pseudo. let pseudo = iter.next().unwrap(); debug_assert!(matches!(*pseudo, Component::PseudoElement(..)), "Used MatchingMode::ForStatelessPseudoElement in a non-pseudo selector"); // The only other parser-allowed Component in this sequence is a state // class. We just don't match in that case. if let Some(s) = iter.next() { debug_assert!(matches!(*s, Component::NonTSPseudoClass(..)), "Someone messed up pseudo-element parsing"); return false; } // Advance to the non-pseudo-element part of the selector, but let the // context note that . if iter.next_sequence().is_none() { return true; } } let result = matches_complex_selector_internal( iter, element, context, &mut RelevantLinkStatus::Looking, flags_setter, Rightmost::Yes, ); match result { SelectorMatchingResult::Matched => true, _ => false } } #[inline] fn matches_hover_and_active_quirk( selector_iter: &SelectorIter, context: &MatchingContext, rightmost: Rightmost, ) -> bool { if context.quirks_mode() != QuirksMode::Quirks { return false; } if context.nesting_level != 0 { return false; } // This compound selector had a pseudo-element to the right that we // intentionally skipped. if matches!(rightmost, Rightmost::Yes) && context.matching_mode == MatchingMode::ForStatelessPseudoElement { return false; } selector_iter.clone().all(|simple| { match *simple { Component::LocalName(_) | Component::AttributeInNoNamespaceExists { .. } | Component::AttributeInNoNamespace { .. } | Component::AttributeOther(_) | Component::ID(_) | Component::Class(_) | Component::PseudoElement(_) | Component::Negation(_) | Component::FirstChild | Component::LastChild | Component::OnlyChild | Component::Empty | Component::NthChild(_, _) | Component::NthLastChild(_, _) | Component::NthOfType(_, _) | Component::NthLastOfType(_, _) | Component::FirstOfType | Component::LastOfType | Component::OnlyOfType => false, Component::NonTSPseudoClass(ref pseudo_class) => { Impl::is_active_or_hover(pseudo_class) }, _ => true, } }) } enum Rightmost { Yes, No, } fn matches_complex_selector_internal( mut selector_iter: SelectorIter, element: &E, context: &mut MatchingContext, relevant_link: &mut RelevantLinkStatus, flags_setter: &mut F, rightmost: Rightmost, ) -> SelectorMatchingResult where E: Element, F: FnMut(&E, ElementSelectorFlags), { *relevant_link = relevant_link.examine_potential_link(element, context); debug!("Matching complex selector {:?} for {:?}, relevant link {:?}", selector_iter, element, relevant_link); let matches_all_simple_selectors = { let matches_hover_and_active_quirk = matches_hover_and_active_quirk(&selector_iter, context, rightmost); let mut local_context = LocalMatchingContext { shared: context, matches_hover_and_active_quirk, }; selector_iter.all(|simple| { matches_simple_selector( simple, element, &mut local_context, &relevant_link, flags_setter, ) }) }; let combinator = selector_iter.next_sequence(); let siblings = combinator.map_or(false, |c| c.is_sibling()); if siblings { flags_setter(element, HAS_SLOW_SELECTOR_LATER_SIBLINGS); } if !matches_all_simple_selectors { return SelectorMatchingResult::NotMatchedAndRestartFromClosestLaterSibling; } match combinator { None => SelectorMatchingResult::Matched, Some(c) => { let (mut next_element, candidate_not_found) = match c { Combinator::NextSibling | Combinator::LaterSibling => { // Only ancestor combinators are allowed while looking for // relevant links, so switch to not looking. *relevant_link = RelevantLinkStatus::NotLooking; (element.prev_sibling_element(), SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant) } Combinator::Child | Combinator::Descendant => { if element.blocks_ancestor_combinators() { (None, SelectorMatchingResult::NotMatchedGlobally) } else { (element.parent_element(), SelectorMatchingResult::NotMatchedGlobally) } } Combinator::PseudoElement => { (element.pseudo_element_originating_element(), SelectorMatchingResult::NotMatchedGlobally) } }; loop { let element = match next_element { None => return candidate_not_found, Some(next_element) => next_element, }; let result = matches_complex_selector_internal( selector_iter.clone(), &element, context, relevant_link, flags_setter, Rightmost::No, ); match (result, c) { // Return the status immediately. (SelectorMatchingResult::Matched, _) => return result, (SelectorMatchingResult::NotMatchedGlobally, _) => return result, // Upgrade the failure status to // NotMatchedAndRestartFromClosestDescendant. (_, Combinator::PseudoElement) | (_, Combinator::Child) => return SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, // Return the status directly. (_, Combinator::NextSibling) => return result, // If the failure status is NotMatchedAndRestartFromClosestDescendant // and combinator is Combinator::LaterSibling, give up this Combinator::LaterSibling matching // and restart from the closest descendant combinator. (SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, Combinator::LaterSibling) => return result, // The Combinator::Descendant combinator and the status is // NotMatchedAndRestartFromClosestLaterSibling or // NotMatchedAndRestartFromClosestDescendant, // or the Combinator::LaterSibling combinator and the status is // NotMatchedAndRestartFromClosestDescendant // can continue to matching on the next candidate element. _ => {}, } next_element = if siblings { element.prev_sibling_element() } else { element.parent_element() }; } } } } /// Determines whether the given element matches the given single selector. #[inline] fn matches_simple_selector( selector: &Component, element: &E, context: &mut LocalMatchingContext, relevant_link: &RelevantLinkStatus, flags_setter: &mut F, ) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { match *selector { Component::Combinator(_) => unreachable!(), Component::PseudoElement(ref pseudo) => { element.match_pseudo_element(pseudo, context.shared) } Component::LocalName(LocalName { ref name, ref lower_name }) => { let is_html = element.is_html_element_in_html_document(); element.get_local_name() == select_name(is_html, name, lower_name).borrow() } Component::ExplicitUniversalType | Component::ExplicitAnyNamespace => { true } Component::Namespace(_, ref url) | Component::DefaultNamespace(ref url) => { element.get_namespace() == url.borrow() } Component::ExplicitNoNamespace => { let ns = ::parser::namespace_empty_string::(); element.get_namespace() == ns.borrow() } Component::ID(ref id) => { element.has_id(id, context.shared.classes_and_ids_case_sensitivity()) } Component::Class(ref class) => { element.has_class(class, context.shared.classes_and_ids_case_sensitivity()) } Component::AttributeInNoNamespaceExists { ref local_name, ref local_name_lower } => { let is_html = element.is_html_element_in_html_document(); element.attr_matches( &NamespaceConstraint::Specific(&::parser::namespace_empty_string::()), select_name(is_html, local_name, local_name_lower), &AttrSelectorOperation::Exists ) } Component::AttributeInNoNamespace { ref local_name, ref local_name_lower, ref value, operator, case_sensitivity, never_matches, } => { if never_matches { return false } let is_html = element.is_html_element_in_html_document(); element.attr_matches( &NamespaceConstraint::Specific(&::parser::namespace_empty_string::()), select_name(is_html, local_name, local_name_lower), &AttrSelectorOperation::WithValue { operator: operator, case_sensitivity: case_sensitivity.to_unconditional(is_html), expected_value: value, } ) } Component::AttributeOther(ref attr_sel) => { if attr_sel.never_matches { return false } let is_html = element.is_html_element_in_html_document(); element.attr_matches( &attr_sel.namespace(), select_name(is_html, &attr_sel.local_name, &attr_sel.local_name_lower), &match attr_sel.operation { ParsedAttrSelectorOperation::Exists => AttrSelectorOperation::Exists, ParsedAttrSelectorOperation::WithValue { operator, case_sensitivity, ref expected_value, } => { AttrSelectorOperation::WithValue { operator: operator, case_sensitivity: case_sensitivity.to_unconditional(is_html), expected_value: expected_value, } } } ) } Component::NonTSPseudoClass(ref pc) => { if context.matches_hover_and_active_quirk && context.shared.nesting_level == 0 && E::Impl::is_active_or_hover(pc) && !element.is_link() { return false; } element.match_non_ts_pseudo_class(pc, &mut context.shared, relevant_link, flags_setter) } Component::FirstChild => { matches_first_child(element, flags_setter) } Component::LastChild => { matches_last_child(element, flags_setter) } Component::OnlyChild => { matches_first_child(element, flags_setter) && matches_last_child(element, flags_setter) } Component::Root => { element.is_root() } Component::Empty => { flags_setter(element, HAS_EMPTY_SELECTOR); element.is_empty() } Component::Scope => { match context.shared.scope_element { Some(ref scope_element) => element.opaque() == *scope_element, None => element.is_root(), } } Component::NthChild(a, b) => { matches_generic_nth_child(element, context, a, b, false, false, flags_setter) } Component::NthLastChild(a, b) => { matches_generic_nth_child(element, context, a, b, false, true, flags_setter) } Component::NthOfType(a, b) => { matches_generic_nth_child(element, context, a, b, true, false, flags_setter) } Component::NthLastOfType(a, b) => { matches_generic_nth_child(element, context, a, b, true, true, flags_setter) } Component::FirstOfType => { matches_generic_nth_child(element, context, 0, 1, true, false, flags_setter) } Component::LastOfType => { matches_generic_nth_child(element, context, 0, 1, true, true, flags_setter) } Component::OnlyOfType => { matches_generic_nth_child(element, context, 0, 1, true, false, flags_setter) && matches_generic_nth_child(element, context, 0, 1, true, true, flags_setter) } Component::Negation(ref negated) => { context.shared.nesting_level += 1; let result = !negated.iter().all(|ss| { matches_simple_selector( ss, element, context, relevant_link, flags_setter, ) }); context.shared.nesting_level -= 1; result } } } fn select_name<'a, T>(is_html: bool, local_name: &'a T, local_name_lower: &'a T) -> &'a T { if is_html { local_name_lower } else { local_name } } #[inline] fn matches_generic_nth_child( element: &E, context: &mut LocalMatchingContext, a: i32, b: i32, is_of_type: bool, is_from_end: bool, flags_setter: &mut F, ) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { if element.ignores_nth_child_selectors() { return false; } flags_setter(element, if is_from_end { HAS_SLOW_SELECTOR } else { HAS_SLOW_SELECTOR_LATER_SIBLINGS }); // Grab a reference to the appropriate cache. let mut cache = context.shared.nth_index_cache.as_mut().map(|c| { c.get(is_of_type, is_from_end) }); // Lookup or compute the index. let index = if let Some(i) = cache.as_mut().and_then(|c| c.lookup(element.opaque())) { i } else { let i = nth_child_index(element, is_of_type, is_from_end, cache.as_mut().map(|s| &mut **s)); cache.as_mut().map(|c| c.insert(element.opaque(), i)); i }; debug_assert_eq!(index, nth_child_index(element, is_of_type, is_from_end, None), "invalid cache"); // Is there a non-negative integer n such that An+B=index? match index.checked_sub(b) { None => false, Some(an) => match an.checked_div(a) { Some(n) => n >= 0 && a * n == an, None /* a == 0 */ => an == 0, }, } } #[inline] fn same_type(a: &E, b: &E) -> bool { a.get_local_name() == b.get_local_name() && a.get_namespace() == b.get_namespace() } #[inline] fn nth_child_index( element: &E, is_of_type: bool, is_from_end: bool, mut cache: Option<&mut NthIndexCacheInner>, ) -> i32 where E: Element, { // The traversal mostly processes siblings left to right. So when we walk // siblings to the right when computing NthLast/NthLastOfType we're unlikely // to get cache hits along the way. As such, we take the hit of walking the // siblings to the left checking the cache in the is_from_end case (this // matches what Gecko does). The indices-from-the-left is handled during the // regular look further below. if let Some(ref mut c) = cache { if is_from_end && !c.is_empty() { let mut index: i32 = 1; let mut curr = element.clone(); while let Some(e) = curr.prev_sibling_element() { curr = e; if !is_of_type || same_type(element, &curr) { if let Some(i) = c.lookup(curr.opaque()) { return i - index; } index += 1; } } } } let mut index: i32 = 1; let mut curr = element.clone(); let next = |e: E| if is_from_end { e.next_sibling_element() } else { e.prev_sibling_element() }; while let Some(e) = next(curr) { curr = e; if !is_of_type || same_type(element, &curr) { // If we're computing indices from the left, check each element in the // cache. We handle the indices-from-the-right case at the top of this // function. if !is_from_end { if let Some(i) = cache.as_mut().and_then(|c| c.lookup(curr.opaque())) { return i + index } } index += 1; } } index } #[inline] fn matches_first_child(element: &E, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { flags_setter(element, HAS_EDGE_CHILD_SELECTOR); element.prev_sibling_element().is_none() } #[inline] fn matches_last_child(element: &E, flags_setter: &mut F) -> bool where E: Element, F: FnMut(&E, ElementSelectorFlags), { flags_setter(element, HAS_EDGE_CHILD_SELECTOR); element.next_sibling_element().is_none() }