/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use rustc::hir; use rustc::hir::intravisit as visit; use rustc::hir::map as ast_map; use rustc::lint::{LateContext, LintPass, LintArray, LateLintPass, LintContext}; use rustc::ty; use syntax::{ast, codemap}; use utils::{match_def_path, in_derive_expn}; declare_lint!(UNROOTED_MUST_ROOT, Deny, "Warn and report usage of unrooted jsmanaged objects"); /// Lint for ensuring safe usage of unrooted pointers /// /// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]` /// values are used correctly. /// /// "Incorrect" usage includes: /// /// - Not being used in a struct/enum field which is not `#[must_root]` itself /// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`) /// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement. /// /// This helps catch most situations where pointers like `JS` are used in a way that they can be invalidated by a /// GC pass. /// /// Structs which have their own mechanism of rooting their unrooted contents (e.g. `ScriptThread`) /// can be marked as `#[allow(unrooted_must_root)]`. Smart pointers which root their interior type /// can be marked as `#[allow_unrooted_interior]` pub struct UnrootedPass; impl UnrootedPass { pub fn new() -> UnrootedPass { UnrootedPass } } /// Checks if a type is unrooted or contains any owned unrooted types fn is_unrooted_ty(cx: &LateContext, ty: &ty::TyS, in_new_function: bool) -> bool { let mut ret = false; ty.maybe_walk(|t| { match t.sty { ty::TyAdt(did, _) => { if cx.tcx.has_attr(did.did, "must_root") { ret = true; false } else if cx.tcx.has_attr(did.did, "allow_unrooted_interior") { false } else if match_def_path(cx, did.did, &["core", "cell", "Ref"]) || match_def_path(cx, did.did, &["core", "cell", "RefMut"]) || match_def_path(cx, did.did, &["core", "slice", "Iter"]) || match_def_path(cx, did.did, &["std", "collections", "hash", "map", "Entry"]) || match_def_path(cx, did.did, &["std", "collections", "hash", "map", "OccupiedEntry"]) || match_def_path(cx, did.did, &["std", "collections", "hash", "map", "VacantEntry"]) { // Structures which are semantically similar to an &ptr. false } else if did.is_box() && in_new_function { // box in new() is okay false } else { true } }, ty::TyRef(..) => false, // don't recurse down &ptrs ty::TyRawPtr(..) => false, // don't recurse down *ptrs ty::TyFnDef(..) | ty::TyFnPtr(_) => false, _ => true } }); ret } impl LintPass for UnrootedPass { fn get_lints(&self) -> LintArray { lint_array!(UNROOTED_MUST_ROOT) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnrootedPass { /// All structs containing #[must_root] types must be #[must_root] themselves fn check_struct_def(&mut self, cx: &LateContext, def: &hir::VariantData, _n: ast::Name, _gen: &hir::Generics, id: ast::NodeId) { let item = match cx.tcx.hir.get(id) { ast_map::Node::NodeItem(item) => item, _ => cx.tcx.hir.expect_item(cx.tcx.hir.get_parent(id)), }; if item.attrs.iter().all(|a| !a.check_name("must_root")) { for ref field in def.fields() { let def_id = cx.tcx.hir.local_def_id(field.id); if is_unrooted_ty(cx, cx.tcx.item_type(def_id), false) { cx.span_lint(UNROOTED_MUST_ROOT, field.span, "Type must be rooted, use #[must_root] on the struct definition to propagate") } } } } /// All enums containing #[must_root] types must be #[must_root] themselves fn check_variant(&mut self, cx: &LateContext, var: &hir::Variant, _gen: &hir::Generics) { let ref map = cx.tcx.hir; if map.expect_item(map.get_parent(var.node.data.id())).attrs.iter().all(|a| !a.check_name("must_root")) { match var.node.data { hir::VariantData::Tuple(ref fields, _) => { for ref field in fields { let def_id = cx.tcx.hir.local_def_id(field.id); if is_unrooted_ty(cx, cx.tcx.item_type(def_id), false) { cx.span_lint(UNROOTED_MUST_ROOT, field.ty.span, "Type must be rooted, use #[must_root] on \ the enum definition to propagate") } } } _ => () // Struct variants already caught by check_struct_def } } } /// Function arguments that are #[must_root] types are not allowed fn check_fn(&mut self, cx: &LateContext<'a, 'tcx>, kind: visit::FnKind, decl: &'tcx hir::FnDecl, body: &'tcx hir::Body, span: codemap::Span, id: ast::NodeId) { let in_new_function = match kind { visit::FnKind::ItemFn(n, _, _, _, _, _, _) | visit::FnKind::Method(n, _, _, _) => { &*n.as_str() == "new" || n.as_str().starts_with("new_") } visit::FnKind::Closure(_) => return, }; if !in_derive_expn(cx, span) { let def_id = cx.tcx.hir.local_def_id(id); let ty = cx.tcx.item_type(def_id); for (arg, ty) in decl.inputs.iter().zip(ty.fn_args().0.iter()) { if is_unrooted_ty(cx, ty, false) { cx.span_lint(UNROOTED_MUST_ROOT, arg.span, "Type must be rooted") } } if !in_new_function { if is_unrooted_ty(cx, ty.fn_ret().0, false) { cx.span_lint(UNROOTED_MUST_ROOT, decl.output.span(), "Type must be rooted") } } } let mut visitor = FnDefVisitor { cx: cx, in_new_function: in_new_function, }; visit::walk_expr(&mut visitor, &body.value); } } struct FnDefVisitor<'a, 'b: 'a, 'tcx: 'a+'b> { cx: &'a LateContext<'b, 'tcx>, in_new_function: bool, } impl<'a, 'b, 'tcx> visit::Visitor<'tcx> for FnDefVisitor<'a, 'b, 'tcx> { fn visit_expr(&mut self, expr: &'tcx hir::Expr) { let cx = self.cx; fn require_rooted(cx: &LateContext, in_new_function: bool, subexpr: &hir::Expr) { let ty = cx.tables.expr_ty(&subexpr); if is_unrooted_ty(cx, ty, in_new_function) { cx.span_lint(UNROOTED_MUST_ROOT, subexpr.span, &format!("Expression of type {:?} must be rooted", ty)) } } match expr.node { /// Trait casts from #[must_root] types are not allowed hir::ExprCast(ref subexpr, _) => require_rooted(cx, self.in_new_function, &*subexpr), // This catches assignments... the main point of this would be to catch mutable // references to `JS`. // FIXME: Enable this? Triggers on certain kinds of uses of DOMRefCell. // hir::ExprAssign(_, ref rhs) => require_rooted(cx, self.in_new_function, &*rhs), // This catches calls; basically, this enforces the constraint that only constructors // can call other constructors. // FIXME: Enable this? Currently triggers with constructs involving DOMRefCell, and // constructs like Vec> and RootedVec>. // hir::ExprCall(..) if !self.in_new_function => { // require_rooted(cx, self.in_new_function, expr); // } _ => { // TODO(pcwalton): Check generics with a whitelist of allowed generics. } } visit::walk_expr(self, expr); } fn visit_pat(&mut self, pat: &'tcx hir::Pat) { let cx = self.cx; if let hir::PatKind::Binding(hir::BindingMode::BindByValue(_), _, _, _) = pat.node { let ty = cx.tables.pat_ty(pat); if is_unrooted_ty(cx, ty, self.in_new_function) { cx.span_lint(UNROOTED_MUST_ROOT, pat.span, &format!("Expression of type {:?} must be rooted", ty)) } } visit::walk_pat(self, pat); } fn visit_fn(&mut self, kind: visit::FnKind<'tcx>, decl: &'tcx hir::FnDecl, body: hir::BodyId, span: codemap::Span, id: ast::NodeId) { if let visit::FnKind::Closure(_) = kind { visit::walk_fn(self, kind, decl, body, span, id); } } fn visit_foreign_item(&mut self, _: &'tcx hir::ForeignItem) {} fn visit_ty(&mut self, _: &'tcx hir::Ty) { } fn nested_visit_map<'this>(&'this mut self) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> { hir::intravisit::NestedVisitorMap::OnlyBodies(&self.cx.tcx.hir) } }