/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use dom::bindings::cell::DOMRefCell; use dom::bindings::codegen::Bindings::DOMMatrixBinding::{DOMMatrixInit, DOMMatrixMethods}; use dom::bindings::codegen::Bindings::DOMMatrixReadOnlyBinding::{DOMMatrixReadOnlyMethods, Wrap}; use dom::bindings::codegen::Bindings::DOMPointBinding::DOMPointInit; use dom::bindings::error; use dom::bindings::error::Fallible; use dom::bindings::js::Root; use dom::bindings::reflector::{reflect_dom_object, Reflectable, Reflector}; use dom::dommatrix::DOMMatrix; use dom::dompoint::DOMPoint; use dom::globalscope::GlobalScope; use euclid::{Matrix4D, Point4D, Radians}; use std::cell::{Cell, Ref}; use std::f64; #[dom_struct] pub struct DOMMatrixReadOnly { reflector_: Reflector, matrix: DOMRefCell>, is2D: Cell, } impl DOMMatrixReadOnly { #[allow(unrooted_must_root)] pub fn new(global: &GlobalScope, is2D: bool, matrix: Matrix4D) -> Root { let dommatrix = Self::new_inherited(is2D, matrix); reflect_dom_object(box dommatrix, global, Wrap) } pub fn new_inherited(is2D: bool, matrix: Matrix4D) -> Self { DOMMatrixReadOnly { reflector_: Reflector::new(), matrix: DOMRefCell::new(matrix), is2D: Cell::new(is2D), } } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly pub fn Constructor(global: &GlobalScope) -> Fallible> { Ok(Self::new(global, true, Matrix4D::identity())) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence pub fn Constructor_(global: &GlobalScope, entries: Vec) -> Fallible> { entries_to_matrix(&entries[..]) .map(|(is2D, matrix)| { Self::new(global, is2D, matrix) }) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-frommatrix pub fn FromMatrix(global: &GlobalScope, other: &DOMMatrixInit) -> Fallible> { dommatrixinit_to_matrix(&other) .map(|(is2D, matrix)| { Self::new(global, is2D, matrix) }) } pub fn matrix(&self) -> Ref> { self.matrix.borrow() } pub fn is_2d(&self) -> bool { self.is2D.get() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11 pub fn set_m11(&self, value: f64) { self.matrix.borrow_mut().m11 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12 pub fn set_m12(&self, value: f64) { self.matrix.borrow_mut().m12 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13 pub fn set_m13(&self, value: f64) { self.matrix.borrow_mut().m13 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14 pub fn set_m14(&self, value: f64) { self.matrix.borrow_mut().m14 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21 pub fn set_m21(&self, value: f64) { self.matrix.borrow_mut().m21 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22 pub fn set_m22(&self, value: f64) { self.matrix.borrow_mut().m22 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23 pub fn set_m23(&self, value: f64) { self.matrix.borrow_mut().m23 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24 pub fn set_m24(&self, value: f64) { self.matrix.borrow_mut().m24 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31 pub fn set_m31(&self, value: f64) { self.matrix.borrow_mut().m31 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32 pub fn set_m32(&self, value: f64) { self.matrix.borrow_mut().m32 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33 pub fn set_m33(&self, value: f64) { self.matrix.borrow_mut().m33 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34 pub fn set_m34(&self, value: f64) { self.matrix.borrow_mut().m34 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41 pub fn set_m41(&self, value: f64) { self.matrix.borrow_mut().m41 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42 pub fn set_m42(&self, value: f64) { self.matrix.borrow_mut().m42 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43 pub fn set_m43(&self, value: f64) { self.matrix.borrow_mut().m43 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44 pub fn set_m44(&self, value: f64) { self.matrix.borrow_mut().m44 = value; } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-multiplyself pub fn multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> { // Step 1. dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| { // Step 2. let mut matrix = self.matrix.borrow_mut(); *matrix = other_matrix.post_mul(&matrix); // Step 3. if !is2D { self.is2D.set(false); } // Step 4 in DOMMatrix.MultiplySelf }) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-premultiplyself pub fn pre_multiply_self(&self, other: &DOMMatrixInit) -> Fallible<()> { // Step 1. dommatrixinit_to_matrix(&other).map(|(is2D, other_matrix)| { // Step 2. let mut matrix = self.matrix.borrow_mut(); *matrix = other_matrix.pre_mul(&matrix); // Step 3. if !is2D { self.is2D.set(false); } // Step 4 in DOMMatrix.PreMultiplySelf }) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-translateself pub fn translate_self(&self, tx: f64, ty: f64, tz: f64) { // Step 1. let translation = Matrix4D::create_translation(tx, ty, tz); let mut matrix = self.matrix.borrow_mut(); *matrix = translation.post_mul(&matrix); // Step 2. if tz != 0.0 { self.is2D.set(false); } // Step 3 in DOMMatrix.TranslateSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scaleself pub fn scale_self(&self, scaleX: f64, scaleY: Option, scaleZ: f64, mut originX: f64, mut originY: f64, mut originZ: f64) { // Step 1. self.translate_self(originX, originY, originZ); // Step 2. let scaleY = scaleY.unwrap_or(scaleX); // Step 3. { let scale3D = Matrix4D::create_scale(scaleX, scaleY, scaleZ); let mut matrix = self.matrix.borrow_mut(); *matrix = scale3D.post_mul(&matrix); } // Step 4. originX = -originX; originY = -originY; originZ = -originZ; // Step 5. self.translate_self(originX, originY, originZ); // Step 6. if scaleZ != 1.0 || originZ != 0.0 { self.is2D.set(false); } // Step 7 in DOMMatrix.ScaleSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-scale3dself pub fn scale_3d_self(&self, scale: f64, originX: f64, originY: f64, originZ: f64) { // Step 1. self.translate_self(originX, originY, originZ); // Step 2. { let scale3D = Matrix4D::create_scale(scale, scale, scale); let mut matrix = self.matrix.borrow_mut(); *matrix = scale3D.post_mul(&matrix); } // Step 3. self.translate_self(-originX, -originY, -originZ); // Step 4. if scale != 1.0 { self.is2D.set(false); } // Step 5 in DOMMatrix.Scale3dSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateself pub fn rotate_self(&self, mut rotX: f64, mut rotY: Option, mut rotZ: Option) { // Step 1. if rotY.is_none() && rotZ.is_none() { rotZ = Some(rotX); rotX = 0.0; rotY = Some(0.0); } // Step 2. let rotY = rotY.unwrap_or(0.0); // Step 3. let rotZ = rotZ.unwrap_or(0.0); // Step 4. if rotX != 0.0 || rotY != 0.0 { self.is2D.set(false); } if rotZ != 0.0 { // Step 5. let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, Radians::new(rotZ.to_radians())); let mut matrix = self.matrix.borrow_mut(); *matrix = rotation.post_mul(&matrix); } if rotY != 0.0 { // Step 6. let rotation = Matrix4D::create_rotation(0.0, 1.0, 0.0, Radians::new(rotY.to_radians())); let mut matrix = self.matrix.borrow_mut(); *matrix = rotation.post_mul(&matrix); } if rotX != 0.0 { // Step 7. let rotation = Matrix4D::create_rotation(1.0, 0.0, 0.0, Radians::new(rotX.to_radians())); let mut matrix = self.matrix.borrow_mut(); *matrix = rotation.post_mul(&matrix); } // Step 8 in DOMMatrix.RotateSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotatefromvectorself pub fn rotate_from_vector_self(&self, x: f64, y: f64) { // don't do anything when the rotation angle is zero or undefined if y != 0.0 || x < 0.0 { // Step 1. let rotZ = Radians::new(f64::atan2(y, x)); let rotation = Matrix4D::create_rotation(0.0, 0.0, 1.0, rotZ); let mut matrix = self.matrix.borrow_mut(); *matrix = rotation.post_mul(&matrix); } // Step 2 in DOMMatrix.RotateFromVectorSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-rotateaxisangleself pub fn rotate_axis_angle_self(&self, x: f64, y: f64, z: f64, angle: f64) { // Step 1. let (norm_x, norm_y, norm_z) = normalize_point(x, y, z); let rotation = Matrix4D::create_rotation(norm_x, norm_y, norm_z, Radians::new(angle.to_radians())); let mut matrix = self.matrix.borrow_mut(); *matrix = rotation.post_mul(&matrix); // Step 2. if x != 0.0 || y != 0.0 { self.is2D.set(false); } // Step 3 in DOMMatrix.RotateAxisAngleSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewxself pub fn skew_x_self(&self, sx: f64) { // Step 1. let skew = Matrix4D::create_skew(Radians::new(sx.to_radians()), Radians::new(0.0)); let mut matrix = self.matrix.borrow_mut(); *matrix = skew.post_mul(&matrix); // Step 2 in DOMMatrix.SkewXSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-skewyself pub fn skew_y_self(&self, sy: f64) { // Step 1. let skew = Matrix4D::create_skew(Radians::new(0.0), Radians::new(sy.to_radians())); let mut matrix = self.matrix.borrow_mut(); *matrix = skew.post_mul(&matrix); // Step 2 in DOMMatrix.SkewYSelf } // https://drafts.fxtf.org/geometry-1/#dom-dommatrix-invertself pub fn invert_self(&self) { let mut matrix = self.matrix.borrow_mut(); // Step 1. *matrix = matrix.inverse().unwrap_or_else(|| { // Step 2. self.is2D.set(false); Matrix4D::row_major(f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN, f64::NAN) }) // Step 3 in DOMMatrix.InvertSelf } } impl DOMMatrixReadOnlyMethods for DOMMatrixReadOnly { // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m11 fn M11(&self) -> f64 { self.matrix.borrow().m11 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m12 fn M12(&self) -> f64 { self.matrix.borrow().m12 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m13 fn M13(&self) -> f64 { self.matrix.borrow().m13 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m14 fn M14(&self) -> f64 { self.matrix.borrow().m14 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m21 fn M21(&self) -> f64 { self.matrix.borrow().m21 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m22 fn M22(&self) -> f64 { self.matrix.borrow().m22 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m23 fn M23(&self) -> f64 { self.matrix.borrow().m23 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m24 fn M24(&self) -> f64 { self.matrix.borrow().m24 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m31 fn M31(&self) -> f64 { self.matrix.borrow().m31 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m32 fn M32(&self) -> f64 { self.matrix.borrow().m32 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m33 fn M33(&self) -> f64 { self.matrix.borrow().m33 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m34 fn M34(&self) -> f64 { self.matrix.borrow().m34 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m41 fn M41(&self) -> f64 { self.matrix.borrow().m41 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m42 fn M42(&self) -> f64 { self.matrix.borrow().m42 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m43 fn M43(&self) -> f64 { self.matrix.borrow().m43 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-m44 fn M44(&self) -> f64 { self.matrix.borrow().m44 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-a fn A(&self) -> f64 { self.M11() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-b fn B(&self) -> f64 { self.M12() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-c fn C(&self) -> f64 { self.M21() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-d fn D(&self) -> f64 { self.M22() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-e fn E(&self) -> f64 { self.M41() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-f fn F(&self) -> f64 { self.M42() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-is2d fn Is2D(&self) -> bool { self.is2D.get() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-isidentity fn IsIdentity(&self) -> bool { let matrix = self.matrix.borrow(); matrix.m12 == 0.0 && matrix.m13 == 0.0 && matrix.m14 == 0.0 && matrix.m21 == 0.0 && matrix.m23 == 0.0 && matrix.m24 == 0.0 && matrix.m31 == 0.0 && matrix.m32 == 0.0 && matrix.m34 == 0.0 && matrix.m41 == 0.0 && matrix.m42 == 0.0 && matrix.m43 == 0.0 && matrix.m11 == 1.0 && matrix.m22 == 1.0 && matrix.m33 == 1.0 && matrix.m44 == 1.0 } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-translate fn Translate(&self, tx: f64, ty: f64, tz: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self).TranslateSelf(tx, ty, tz) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale fn Scale(&self, scaleX: f64, scaleY: Option, scaleZ: f64, originX: f64, originY: f64, originZ: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self) .ScaleSelf(scaleX, scaleY, scaleZ, originX, originY, originZ) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-scale3d fn Scale3d(&self, scale: f64, originX: f64, originY: f64, originZ: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self) .Scale3dSelf(scale, originX, originY, originZ) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotate fn Rotate(&self, rotX: f64, rotY: Option, rotZ: Option) -> Root { DOMMatrix::from_readonly(&self.global(), self).RotateSelf(rotX, rotY, rotZ) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotatefromvector fn RotateFromVector(&self, x: f64, y: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self).RotateFromVectorSelf(x, y) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-rotateaxisangle fn RotateAxisAngle(&self, x: f64, y: f64, z: f64, angle: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self).RotateAxisAngleSelf(x, y, z, angle) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewx fn SkewX(&self, sx: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self).SkewXSelf(sx) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-skewy fn SkewY(&self, sy: f64) -> Root { DOMMatrix::from_readonly(&self.global(), self).SkewYSelf(sy) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-multiply fn Multiply(&self, other: &DOMMatrixInit) -> Fallible> { DOMMatrix::from_readonly(&self.global(), self).MultiplySelf(&other) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipx fn FlipX(&self) -> Root { let is2D = self.is2D.get(); let flip = Matrix4D::row_major(-1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0); let matrix = flip.post_mul(&self.matrix.borrow()); DOMMatrix::new(&self.global(), is2D, matrix) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-flipy fn FlipY(&self) -> Root { let is2D = self.is2D.get(); let flip = Matrix4D::row_major(1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0); let matrix = flip.post_mul(&self.matrix.borrow()); DOMMatrix::new(&self.global(), is2D, matrix) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-inverse fn Inverse(&self) -> Root { DOMMatrix::from_readonly(&self.global(), self).InvertSelf() } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-transformpoint fn TransformPoint(&self, point: &DOMPointInit) -> Root { let matrix = self.matrix.borrow(); let result = matrix.transform_point4d(&Point4D::new(point.x, point.y, point.z, point.w)); DOMPoint::new( &self.global(), result.x as f64, result.y as f64, result.z as f64, result.w as f64) } } // https://drafts.fxtf.org/geometry-1/#create-a-2d-matrix fn create_2d_matrix(entries: &[f64]) -> Matrix4D { Matrix4D::row_major(entries[0], entries[1], 0.0, 0.0, entries[2], entries[3], 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, entries[4], entries[5], 0.0, 1.0) } // https://drafts.fxtf.org/geometry-1/#create-a-3d-matrix fn create_3d_matrix(entries: &[f64]) -> Matrix4D { Matrix4D::row_major(entries[0], entries[1], entries[2], entries[3], entries[4], entries[5], entries[6], entries[7], entries[8], entries[9], entries[10], entries[11], entries[12], entries[13], entries[14], entries[15]) } // https://drafts.fxtf.org/geometry-1/#dom-dommatrixreadonly-dommatrixreadonly-numbersequence pub fn entries_to_matrix(entries: &[f64]) -> Fallible<(bool, Matrix4D)> { if entries.len() == 6 { Ok((true, create_2d_matrix(&entries))) } else if entries.len() == 16 { Ok((false, create_3d_matrix(&entries))) } else { let err_msg = format!("Expected 6 or 16 entries, but found {}.", entries.len()); Err(error::Error::Type(err_msg.to_owned())) } } // https://drafts.fxtf.org/geometry-1/#validate-and-fixup pub fn dommatrixinit_to_matrix(dict: &DOMMatrixInit) -> Fallible<(bool, Matrix4D)> { // Step 1. if dict.a.is_some() && dict.m11.is_some() && dict.a.unwrap() != dict.m11.unwrap() || dict.b.is_some() && dict.m12.is_some() && dict.b.unwrap() != dict.m12.unwrap() || dict.c.is_some() && dict.m21.is_some() && dict.c.unwrap() != dict.m21.unwrap() || dict.d.is_some() && dict.m22.is_some() && dict.d.unwrap() != dict.m22.unwrap() || dict.e.is_some() && dict.m41.is_some() && dict.e.unwrap() != dict.m41.unwrap() || dict.f.is_some() && dict.m42.is_some() && dict.f.unwrap() != dict.m42.unwrap() || dict.is2D.is_some() && dict.is2D.unwrap() && (dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 || dict.m23 != 0.0 || dict.m43 != 0.0 || dict.m14 != 0.0 || dict.m24 != 0.0 || dict.m34 != 0.0 || dict.m33 != 1.0 || dict.m44 != 1.0) { Err(error::Error::Type("Invalid matrix initializer.".to_owned())) } else { let mut is2D = dict.is2D; // Step 2. let m11 = dict.m11.unwrap_or(dict.a.unwrap_or(1.0)); // Step 3. let m12 = dict.m12.unwrap_or(dict.b.unwrap_or(0.0)); // Step 4. let m21 = dict.m21.unwrap_or(dict.c.unwrap_or(0.0)); // Step 5. let m22 = dict.m22.unwrap_or(dict.d.unwrap_or(1.0)); // Step 6. let m41 = dict.m41.unwrap_or(dict.e.unwrap_or(0.0)); // Step 7. let m42 = dict.m42.unwrap_or(dict.f.unwrap_or(0.0)); // Step 8. if is2D.is_none() && (dict.m31 != 0.0 || dict.m32 != 0.0 || dict.m13 != 0.0 || dict.m23 != 0.0 || dict.m43 != 0.0 || dict.m14 != 0.0 || dict.m24 != 0.0 || dict.m34 != 0.0 || dict.m33 != 1.0 || dict.m44 != 1.0) { is2D = Some(false); } // Step 9. if is2D.is_none() { is2D = Some(true); } let matrix = Matrix4D::row_major(m11, m12, dict.m13, dict.m14, m21, m22, dict.m23, dict.m24, dict.m31, dict.m32, dict.m33, dict.m34, m41, m42, dict.m43, dict.m44); Ok((is2D.unwrap(), matrix)) } } #[inline] fn normalize_point(x: f64, y: f64, z: f64) -> (f64, f64, f64) { let len = (x * x + y * y + z * z).sqrt(); if len == 0.0 { (0.0, 0.0, 0.0) } else { (x / len, y / len, z / len) } }