/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use syntax::{ast, codemap, visit}; use syntax::attr::AttrMetaMethods; use rustc::ast_map; use rustc::lint::{Context, LintPass, LintArray}; use rustc::middle::ty::expr_ty; use rustc::middle::{ty, def}; use rustc::util::ppaux::Repr; use utils::unsafe_context; declare_lint!(UNROOTED_MUST_ROOT, Deny, "Warn and report usage of unrooted jsmanaged objects"); /// Lint for ensuring safe usage of unrooted pointers /// /// This lint (disable with `-A unrooted-must-root`/`#[allow(unrooted_must_root)]`) ensures that `#[must_root]` /// values are used correctly. /// /// "Incorrect" usage includes: /// /// - Not being used in a struct/enum field which is not `#[must_root]` itself /// - Not being used as an argument to a function (Except onces named `new` and `new_inherited`) /// - Not being bound locally in a `let` statement, assignment, `for` loop, or `match` statement. /// /// This helps catch most situations where pointers like `JS` are used in a way that they can be invalidated by a /// GC pass. pub struct UnrootedPass; // Checks if a type has the #[must_root] annotation. // Unwraps pointers as well // TODO (#3874, sort of): unwrap other types like Vec/Option/HashMap/etc fn lint_unrooted_ty(cx: &Context, ty: &ast::Ty, warning: &str) { match ty.node { ast::TyVec(ref t) | ast::TyFixedLengthVec(ref t, _) | ast::TyPtr(ast::MutTy { ty: ref t, ..}) | ast::TyRptr(_, ast::MutTy { ty: ref t, ..}) => lint_unrooted_ty(cx, &**t, warning), ast::TyPath(..) => { match cx.tcx.def_map.borrow()[&ty.id] { def::PathResolution{ base_def: def::DefTy(def_id, _), .. } => { if ty::has_attr(cx.tcx, def_id, "must_root") { cx.span_lint(UNROOTED_MUST_ROOT, ty.span, warning); } } _ => (), } } _ => (), }; } impl LintPass for UnrootedPass { fn get_lints(&self) -> LintArray { lint_array!(UNROOTED_MUST_ROOT) } /// All structs containing #[must_root] types must be #[must_root] themselves fn check_struct_def(&mut self, cx: &Context, def: &ast::StructDef, _i: ast::Ident, _gen: &ast::Generics, id: ast::NodeId) { let item = match cx.tcx.map.get(id) { ast_map::Node::NodeItem(item) => item, _ => cx.tcx.map.expect_item(cx.tcx.map.get_parent(id)), }; if item.attrs.iter().all(|a| !a.check_name("must_root")) { for ref field in def.fields.iter() { lint_unrooted_ty(cx, &*field.node.ty, "Type must be rooted, use #[must_root] on the struct definition to propagate"); } } } /// All enums containing #[must_root] types must be #[must_root] themselves fn check_variant(&mut self, cx: &Context, var: &ast::Variant, _gen: &ast::Generics) { let ref map = cx.tcx.map; if map.expect_item(map.get_parent(var.node.id)).attrs.iter().all(|a| !a.check_name("must_root")) { match var.node.kind { ast::TupleVariantKind(ref vec) => { for ty in vec.iter() { lint_unrooted_ty(cx, &*ty.ty, "Type must be rooted, use #[must_root] on the enum definition to propagate") } } _ => () // Struct variants already caught by check_struct_def } } } /// Function arguments that are #[must_root] types are not allowed fn check_fn(&mut self, cx: &Context, kind: visit::FnKind, decl: &ast::FnDecl, block: &ast::Block, _span: codemap::Span, id: ast::NodeId) { match kind { visit::FkItemFn(i, _, _, _, _, _) | visit::FkMethod(i, _, _) if i.as_str() == "new" || i.as_str() == "new_inherited" => { return; }, visit::FkItemFn(_, _, style, _, _, _) => match style { ast::Unsafety::Unsafe => return, _ => () }, _ => () } if unsafe_context(&cx.tcx.map, id) { return; } match block.rules { ast::DefaultBlock => { for arg in decl.inputs.iter() { lint_unrooted_ty(cx, &*arg.ty, "Type must be rooted") } } _ => () // fn is `unsafe` } } // Partially copied from rustc::middle::lint::builtin // Catches `let` statements and assignments which store a #[must_root] value // Expressions which return out of blocks eventually end up in a `let` or assignment // statement or a function return (which will be caught when it is used elsewhere) fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { match s.node { ast::StmtDecl(_, id) | ast::StmtExpr(_, id) | ast::StmtSemi(_, id) if unsafe_context(&cx.tcx.map, id) => { return }, _ => () }; let expr = match s.node { // Catch a `let` binding ast::StmtDecl(ref decl, _) => match decl.node { ast::DeclLocal(ref loc) => match loc.init { Some(ref e) => &**e, _ => return }, _ => return }, ast::StmtExpr(ref expr, _) => match expr.node { // This catches deferred `let` statements ast::ExprAssign(_, ref e) | // Match statements allow you to bind onto the variable later in an arm // We need not check arms individually since enum/struct fields are already // linted in `check_struct_def` and `check_variant` // (so there is no way of destructuring out a `#[must_root]` field) ast::ExprMatch(ref e, _, _) | // For loops allow you to bind a return value locally ast::ExprForLoop(_, ref e, _, _) => &**e, // XXXManishearth look into `if let` once it lands in our rustc _ => return }, _ => return }; let t = expr_ty(cx.tcx, &*expr); match t.sty { ty::TyStruct(did, _) | ty::TyEnum(did, _) => { if ty::has_attr(cx.tcx, did, "must_root") { cx.span_lint(UNROOTED_MUST_ROOT, expr.span, &format!("Expression of type {} must be rooted", t.repr(cx.tcx))); } } _ => {} } } }