/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Traversals over the DOM and flow trees, running the layout computations. use css::node_style::StyledNode; use css::matching::{ApplicableDeclarations, MatchMethods, StyleSharingResult}; use construct::FlowConstructor; use context::LayoutContext; use flow::{Flow, MutableFlowUtils}; use flow::{PreorderFlowTraversal, PostorderFlowTraversal}; use flow; use incremental::{RestyleDamage, BUBBLE_ISIZES, REFLOW, REFLOW_OUT_OF_FLOW}; use wrapper::{layout_node_to_unsafe_layout_node, LayoutNode}; use wrapper::{PostorderNodeMutTraversal, ThreadSafeLayoutNode, UnsafeLayoutNode}; use wrapper::{PreorderDomTraversal, PostorderDomTraversal}; use servo_util::bloom::BloomFilter; use servo_util::opts; use servo_util::tid::tid; use style::TNode; use std::cell::RefCell; use std::mem; /// Every time we do another layout, the old bloom filters are invalid. This is /// detected by ticking a generation number every layout. type Generation = uint; /// A pair of the bloom filter used for css selector matching, and the node to /// which it applies. This is used to efficiently do `Descendant` selector /// matches. Thanks to the bloom filter, we can avoid walking up the tree /// looking for ancestors that aren't there in the majority of cases. /// /// As we walk down the DOM tree a task-local bloom filter is built of all the /// CSS `SimpleSelector`s which are part of a `Descendant` compound selector /// (i.e. paired with a `Descendant` combinator, in the `next` field of a /// `CompoundSelector`. /// /// Before a `Descendant` selector match is tried, it's compared against the /// bloom filter. If the bloom filter can exclude it, the selector is quickly /// rejected. /// /// When done styling a node, all selectors previously inserted into the filter /// are removed. /// /// Since a work-stealing queue is used for styling, sometimes, the bloom filter /// will no longer be the for the parent of the node we're currently on. When /// this happens, the task local bloom filter will be thrown away and rebuilt. thread_local!(static STYLE_BLOOM: RefCell, UnsafeLayoutNode, Generation)>> = RefCell::new(None)); /// Returns the task local bloom filter. /// /// If one does not exist, a new one will be made for you. If it is out of date, /// it will be thrown out and a new one will be made for you. fn take_task_local_bloom_filter(parent_node: Option, layout_context: &LayoutContext) -> Box { STYLE_BLOOM.with(|style_bloom| { match (parent_node, style_bloom.borrow_mut().take()) { // Root node. Needs new bloom filter. (None, _ ) => { debug!("[{}] No parent, but new bloom filter!", tid()); box BloomFilter::new() } // No bloom filter for this thread yet. (Some(parent), None) => { let mut bloom_filter = box BloomFilter::new(); insert_ancestors_into_bloom_filter(&mut bloom_filter, parent, layout_context); bloom_filter } // Found cached bloom filter. (Some(parent), Some((mut bloom_filter, old_node, old_generation))) => { // Hey, the cached parent is our parent! We can reuse the bloom filter. if old_node == layout_node_to_unsafe_layout_node(&parent) && old_generation == layout_context.shared.generation { debug!("[{}] Parent matches (={}). Reusing bloom filter.", tid(), old_node.0); bloom_filter.clone() } else { // Oh no. the cached parent is stale. I guess we need a new one. Reuse the existing // allocation to avoid malloc churn. *bloom_filter = BloomFilter::new(); insert_ancestors_into_bloom_filter(&mut bloom_filter, parent, layout_context); bloom_filter } }, } }) } fn put_task_local_bloom_filter(bf: Box, unsafe_node: &UnsafeLayoutNode, layout_context: &LayoutContext) { let bf: *mut BloomFilter = unsafe { mem::transmute(bf) }; STYLE_BLOOM.with(|style_bloom| { assert!(style_bloom.borrow().is_none(), "Putting into a never-taken task-local bloom filter"); let bf: Box = unsafe { mem::transmute(bf) }; *style_bloom.borrow_mut() = Some((bf, *unsafe_node, layout_context.shared.generation)); }) } /// "Ancestors" in this context is inclusive of ourselves. fn insert_ancestors_into_bloom_filter(bf: &mut Box, mut n: LayoutNode, layout_context: &LayoutContext) { debug!("[{}] Inserting ancestors.", tid()); let mut ancestors = 0u; loop { ancestors += 1; n.insert_into_bloom_filter(&mut **bf); n = match n.layout_parent_node(layout_context.shared) { None => break, Some(p) => p, }; } debug!("[{}] Inserted {} ancestors.", tid(), ancestors); } /// The recalc-style-for-node traversal, which styles each node and must run before /// layout computation. This computes the styles applied to each node. #[derive(Copy)] pub struct RecalcStyleForNode<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PreorderDomTraversal for RecalcStyleForNode<'a> { #[inline] fn process(&self, node: LayoutNode) { // Initialize layout data. // // FIXME(pcwalton): Stop allocating here. Ideally this should just be done by the HTML // parser. node.initialize_layout_data(self.layout_context.shared.layout_chan.clone()); // Get the parent node. let parent_opt = node.layout_parent_node(self.layout_context.shared); // Get the style bloom filter. let bf = take_task_local_bloom_filter(parent_opt, self.layout_context); // Just needs to be wrapped in an option for `match_node`. let some_bf = Some(bf); let nonincremental_layout = opts::get().nonincremental_layout; if nonincremental_layout || node.is_dirty() { // Remove existing CSS styles from nodes whose content has changed (e.g. text changed), // to force non-incremental reflow. if node.has_changed() { let node = ThreadSafeLayoutNode::new(&node); node.unstyle(); } // Check to see whether we can share a style with someone. let style_sharing_candidate_cache = self.layout_context.style_sharing_candidate_cache(); let sharing_result = unsafe { node.share_style_if_possible(style_sharing_candidate_cache, parent_opt.clone()) }; // Otherwise, match and cascade selectors. match sharing_result { StyleSharingResult::CannotShare(mut shareable) => { let mut applicable_declarations = ApplicableDeclarations::new(); if node.is_element() { // Perform the CSS selector matching. let stylist = unsafe { &*self.layout_context.shared.stylist }; node.match_node(stylist, &some_bf, &mut applicable_declarations, &mut shareable); } else { ThreadSafeLayoutNode::new(&node).set_restyle_damage(RestyleDamage::all()) } // Perform the CSS cascade. unsafe { node.cascade_node(parent_opt, &applicable_declarations, self.layout_context.applicable_declarations_cache()); } // Add ourselves to the LRU cache. if shareable { style_sharing_candidate_cache.insert_if_possible(&node); } } StyleSharingResult::StyleWasShared(index, damage) => { style_sharing_candidate_cache.touch(index); ThreadSafeLayoutNode::new(&node).set_restyle_damage(damage); } } } let mut bf = some_bf.unwrap(); let unsafe_layout_node = layout_node_to_unsafe_layout_node(&node); // Before running the children, we need to insert our nodes into the bloom // filter. debug!("[{}] + {:X}", tid(), unsafe_layout_node.0); node.insert_into_bloom_filter(&mut *bf); // NB: flow construction updates the bloom filter on the way up. put_task_local_bloom_filter(bf, &unsafe_layout_node, self.layout_context); } } /// The flow construction traversal, which builds flows for styled nodes. #[derive(Copy)] pub struct ConstructFlows<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PostorderDomTraversal for ConstructFlows<'a> { #[inline] fn process(&self, node: LayoutNode) { // Construct flows for this node. { let tnode = ThreadSafeLayoutNode::new(&node); // Always reconstruct if incremental layout is turned off. let nonincremental_layout = opts::get().nonincremental_layout; if nonincremental_layout || node.has_dirty_descendants() { let mut flow_constructor = FlowConstructor::new(self.layout_context); if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) { flow_constructor.process(&tnode); debug!("Constructed flow for {:x}: {:x}", tnode.debug_id(), tnode.flow_debug_id()); } } // Reset the layout damage in this node. It's been propagated to the // flow by the flow constructor. tnode.set_restyle_damage(RestyleDamage::empty()); } unsafe { node.set_changed(false); node.set_dirty(false); node.set_dirty_siblings(false); node.set_dirty_descendants(false); } let unsafe_layout_node = layout_node_to_unsafe_layout_node(&node); let (mut bf, old_node, old_generation) = STYLE_BLOOM.with(|style_bloom| { mem::replace(&mut *style_bloom.borrow_mut(), None) .expect("The bloom filter should have been set by style recalc.") }); assert_eq!(old_node, unsafe_layout_node); assert_eq!(old_generation, self.layout_context.shared.generation); match node.layout_parent_node(self.layout_context.shared) { None => { debug!("[{}] - {:X}, and deleting BF.", tid(), unsafe_layout_node.0); // If this is the reflow root, eat the task-local bloom filter. } Some(parent) => { // Otherwise, put it back, but remove this node. node.remove_from_bloom_filter(&mut *bf); let unsafe_parent = layout_node_to_unsafe_layout_node(&parent); put_task_local_bloom_filter(bf, &unsafe_parent, self.layout_context); }, }; } } /// The flow tree verification traversal. This is only on in debug builds. #[cfg(debug)] struct FlowTreeVerification; #[cfg(debug)] impl PreorderFlow for FlowTreeVerification { #[inline] fn process(&mut self, flow: &mut Flow) { let base = flow::base(flow); if !base.flags.is_leaf() && !base.flags.is_nonleaf() { println!("flow tree verification failed: flow wasn't a leaf or a nonleaf!"); flow.dump(); panic!("flow tree verification failed") } } } /// The bubble-inline-sizes traversal, the first part of layout computation. This computes /// preferred and intrinsic inline-sizes and bubbles them up the tree. pub struct BubbleISizes<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PostorderFlowTraversal for BubbleISizes<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.bubble_inline_sizes(); flow::mut_base(flow).restyle_damage.remove(BUBBLE_ISIZES); } #[inline] fn should_process(&self, flow: &mut Flow) -> bool { flow::base(flow).restyle_damage.contains(BUBBLE_ISIZES) } } /// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`. #[derive(Copy)] pub struct AssignISizes<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PreorderFlowTraversal for AssignISizes<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.assign_inline_sizes(self.layout_context); } #[inline] fn should_process(&self, flow: &mut Flow) -> bool { flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) } } /// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of /// layout computation. Determines the final block-sizes for all layout objects, computes /// positions, and computes overflow regions. In Gecko this corresponds to `Reflow` and /// `FinishAndStoreOverflow`. #[derive(Copy)] pub struct AssignBSizesAndStoreOverflow<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PostorderFlowTraversal for AssignBSizesAndStoreOverflow<'a> { #[inline] fn process(&self, flow: &mut Flow) { // Can't do anything with flows impacted by floats until we reach their inorder parent. // NB: We must return without resetting the restyle bits for these, as we haven't actually // reflowed anything! if flow::base(flow).flags.impacted_by_floats() { return } flow.assign_block_size(self.layout_context); flow.store_overflow(self.layout_context); } #[inline] fn should_process(&self, flow: &mut Flow) -> bool { flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) } } #[derive(Copy)] pub struct ComputeAbsolutePositions<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PreorderFlowTraversal for ComputeAbsolutePositions<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.compute_absolute_position(); } } #[derive(Copy)] pub struct BuildDisplayList<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PostorderFlowTraversal for BuildDisplayList<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.build_display_list(self.layout_context); } }