/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ //! Traversals over the DOM and flow trees, running the layout computations. use construct::FlowConstructor; use context::{LayoutContext, SharedLayoutContext}; use display_list_builder::DisplayListBuildState; use flow::{self, PreorderFlowTraversal}; use flow::{CAN_BE_FRAGMENTED, Flow, ImmutableFlowUtils, PostorderFlowTraversal}; use gfx::display_list::OpaqueNode; use script_layout_interface::wrapper_traits::{LayoutElement, LayoutNode, ThreadSafeLayoutNode}; use std::mem; use style::atomic_refcell::AtomicRefCell; use style::context::{LocalStyleContext, SharedStyleContext, StyleContext}; use style::data::ElementData; use style::dom::{StylingMode, TElement, TNode}; use style::selector_impl::RestyleDamage; use style::servo::restyle_damage::{BUBBLE_ISIZES, REFLOW, REFLOW_OUT_OF_FLOW, REPAINT}; use style::traversal::{DomTraversalContext, put_thread_local_bloom_filter}; use style::traversal::{recalc_style_at, remove_from_bloom_filter}; use style::traversal::take_thread_local_bloom_filter; use util::opts; use wrapper::{GetRawData, LayoutNodeHelpers, LayoutNodeLayoutData}; pub struct RecalcStyleAndConstructFlows<'lc> { context: LayoutContext<'lc>, root: OpaqueNode, } #[allow(unsafe_code)] impl<'lc, N> DomTraversalContext for RecalcStyleAndConstructFlows<'lc> where N: LayoutNode + TNode, N::ConcreteElement: LayoutElement { type SharedContext = SharedLayoutContext; #[allow(unsafe_code)] fn new<'a>(shared: &'a Self::SharedContext, root: OpaqueNode) -> Self { // FIXME(bholley): This transmutation from &'a to &'lc is very unfortunate, but I haven't // found a way to avoid it despite spending several days on it (and consulting Manishearth, // brson, and nmatsakis). // // The crux of the problem is that parameterizing DomTraversalContext on the lifetime of // the SharedContext doesn't work for a variety of reasons [1]. However, the code in // parallel.rs needs to be able to use the DomTraversalContext trait (or something similar) // to stack-allocate a struct (a generalized LayoutContext<'a>) that holds a borrowed // SharedContext, which means that the struct needs to be parameterized on a lifetime. // Given the aforementioned constraint, the only way to accomplish this is to avoid // propagating the borrow lifetime from the struct to the trait, but that means that the // new() method on the trait cannot require the lifetime of its argument to match the // lifetime of the Self object it creates. // // This could be solved with an associated type with an unbound lifetime parameter, but // that would require higher-kinded types, which don't exist yet and probably aren't coming // for a while. // // So we transmute. :-( This is safe because the DomTravesalContext is stack-allocated on // the worker thread while processing a WorkUnit, whereas the borrowed SharedContext is // live for the entire duration of the restyle. This really could _almost_ compile: all // we'd need to do is change the signature to to |new<'a: 'lc>|, and everything would // work great. But we can't do that, because that would cause a mismatch with the signature // in the trait we're implementing, and we can't mention 'lc in that trait at all for the // reasons described above. // // [1] For example, the WorkQueue type needs to be parameterized on the concrete type of // DomTraversalContext::SharedContext, and the WorkQueue lifetime is similar to that of the // LayoutThread, generally much longer than that of a given SharedLayoutContext borrow. let shared_lc: &'lc SharedLayoutContext = unsafe { mem::transmute(shared) }; RecalcStyleAndConstructFlows { context: LayoutContext::new(shared_lc), root: root, } } fn process_preorder(&self, node: N) { // FIXME(pcwalton): Stop allocating here. Ideally this should just be // done by the HTML parser. node.initialize_data(); if node.is_text_node() { // FIXME(bholley): Stop doing this silly work to maintain broken bloom filter // invariants. // // Longer version: The bloom filter is entirely busted for parallel traversal. Because // parallel traversal is breadth-first, each sibling rejects the bloom filter set up // by the previous sibling (which is valid for children, not siblings) and recreates // it. Similarly, the fixup performed in the bottom-up traversal is useless, because // threads perform flow construction up the parent chain until they find a parent with // other unprocessed children, at which point they bail to the work queue and find a // different node. // // Nevertheless, the remove_from_bloom_filter call at the end of flow construction // asserts that the bloom filter is valid for the current node. This breaks when we // stop calling recalc_style_at for text nodes, because the recursive chain of // construct_flows_at calls is no longer necessarily rooted in a call that sets up the // thread-local bloom filter for the leaf node. // // The bloom filter stuff is all going to be rewritten, so we just hackily duplicate // the bloom filter manipulation from recalc_style_at to maintain invariants. let parent = node.parent_node().unwrap().as_element(); let bf = take_thread_local_bloom_filter(parent, self.root, self.context.shared_context()); put_thread_local_bloom_filter(bf, &node.to_unsafe(), self.context.shared_context()); } else { let el = node.as_element().unwrap(); recalc_style_at::<_, _, Self>(&self.context, self.root, el); } } fn process_postorder(&self, node: N) { construct_flows_at(&self.context, self.root, node); } fn should_traverse_child(parent: N::ConcreteElement, child: N) -> bool { // If the parent is display:none, we don't need to do anything. if parent.is_display_none() { return false; } // If this node has been marked as damaged in some way, we need to // traverse it for layout. if child.has_changed() { return true; } match child.as_element() { Some(el) => el.styling_mode() != StylingMode::Stop, // Aside from the has_changed case above, we want to traverse non-element children // in two additional cases: // (1) They child doesn't yet have layout data (preorder traversal initializes it). // (2) The parent element has restyle damage (so the text flow also needs fixup). None => child.get_raw_data().is_none() || parent.as_node().to_threadsafe().restyle_damage() != RestyleDamage::empty(), } } unsafe fn ensure_element_data(element: &N::ConcreteElement) -> &AtomicRefCell { element.as_node().initialize_data(); element.get_data().unwrap() } unsafe fn clear_element_data(element: &N::ConcreteElement) { element.as_node().clear_data(); } fn local_context(&self) -> &LocalStyleContext { self.context.local_context() } } /// A bottom-up, parallelizable traversal. pub trait PostorderNodeMutTraversal { /// The operation to perform. Return true to continue or false to stop. fn process(&mut self, node: &ConcreteThreadSafeLayoutNode); } /// The flow construction traversal, which builds flows for styled nodes. #[inline] #[allow(unsafe_code)] fn construct_flows_at<'a, N: LayoutNode>(context: &'a LayoutContext<'a>, root: OpaqueNode, node: N) { // Construct flows for this node. { let tnode = node.to_threadsafe(); // Always reconstruct if incremental layout is turned off. let nonincremental_layout = opts::get().nonincremental_layout; if nonincremental_layout || tnode.restyle_damage() != RestyleDamage::empty() || node.as_element().map_or(false, |el| el.has_dirty_descendants()) { let mut flow_constructor = FlowConstructor::new(context); if nonincremental_layout || !flow_constructor.repair_if_possible(&tnode) { flow_constructor.process(&tnode); debug!("Constructed flow for {:x}: {:x}", tnode.debug_id(), tnode.flow_debug_id()); } } tnode.clear_restyle_damage(); } unsafe { node.clear_dirty_bits(); } remove_from_bloom_filter(context, root, node); } /// The bubble-inline-sizes traversal, the first part of layout computation. This computes /// preferred and intrinsic inline-sizes and bubbles them up the tree. pub struct BubbleISizes<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PostorderFlowTraversal for BubbleISizes<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.bubble_inline_sizes(); flow::mut_base(flow).restyle_damage.remove(BUBBLE_ISIZES); } #[inline] fn should_process(&self, flow: &mut Flow) -> bool { flow::base(flow).restyle_damage.contains(BUBBLE_ISIZES) } } /// The assign-inline-sizes traversal. In Gecko this corresponds to `Reflow`. #[derive(Copy, Clone)] pub struct AssignISizes<'a> { pub shared_context: &'a SharedStyleContext, } impl<'a> PreorderFlowTraversal for AssignISizes<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.assign_inline_sizes(self.shared_context); } #[inline] fn should_process(&self, flow: &mut Flow) -> bool { flow::base(flow).restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) } } /// The assign-block-sizes-and-store-overflow traversal, the last (and most expensive) part of /// layout computation. Determines the final block-sizes for all layout objects and computes /// positions. In Gecko this corresponds to `Reflow`. #[derive(Copy, Clone)] pub struct AssignBSizes<'a> { pub layout_context: &'a LayoutContext<'a>, } impl<'a> PostorderFlowTraversal for AssignBSizes<'a> { #[inline] fn process(&self, flow: &mut Flow) { // Can't do anything with anything that floats might flow through until we reach their // inorder parent. // // NB: We must return without resetting the restyle bits for these, as we haven't actually // reflowed anything! if flow.floats_might_flow_through() { return } flow.assign_block_size(self.layout_context); } #[inline] fn should_process(&self, flow: &mut Flow) -> bool { let base = flow::base(flow); base.restyle_damage.intersects(REFLOW_OUT_OF_FLOW | REFLOW) && // The fragmentation countainer is responsible for calling Flow::fragment recursively !base.flags.contains(CAN_BE_FRAGMENTED) } } #[derive(Copy, Clone)] pub struct ComputeAbsolutePositions<'a> { pub layout_context: &'a SharedLayoutContext, } impl<'a> PreorderFlowTraversal for ComputeAbsolutePositions<'a> { #[inline] fn process(&self, flow: &mut Flow) { flow.compute_absolute_position(self.layout_context); } } pub struct BuildDisplayList<'a> { pub state: DisplayListBuildState<'a>, } impl<'a> BuildDisplayList<'a> { #[inline] pub fn traverse(&mut self, flow: &mut Flow) { let new_stacking_context = flow::base(flow).stacking_context_id != self.state.stacking_context_id(); if new_stacking_context { self.state.push_stacking_context_id(flow::base(flow).stacking_context_id); } let new_scroll_root = flow::base(flow).scroll_root_id != self.state.scroll_root_id(); if new_scroll_root { self.state.push_scroll_root_id(flow::base(flow).scroll_root_id); } if self.should_process() { flow.build_display_list(&mut self.state); flow::mut_base(flow).restyle_damage.remove(REPAINT); } for kid in flow::child_iter_mut(flow) { self.traverse(kid); } if new_stacking_context { self.state.pop_stacking_context_id(); } if new_scroll_root { self.state.pop_scroll_root_id(); } } #[inline] fn should_process(&self) -> bool { true } }