/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use azure::azure::AzFloat; use azure::azure_hl::{AntialiasMode, CapStyle, CompositionOp, JoinStyle}; use azure::azure_hl::{BackendType, DrawOptions, DrawTarget, Pattern, StrokeOptions, SurfaceFormat}; use azure::azure_hl::{Color, ColorPattern, DrawSurfaceOptions, Filter, PathBuilder}; use azure::azure_hl::{ExtendMode, GradientStop, LinearGradientPattern, RadialGradientPattern}; use azure::azure_hl::SurfacePattern; use canvas_traits::canvas::*; use cssparser::RGBA; use euclid::{Transform2D, Point2D, Vector2D, Rect, Size2D}; use ipc_channel::ipc::{self, IpcSender}; use num_traits::ToPrimitive; use serde_bytes::ByteBuf; use std::borrow::ToOwned; use std::mem; use std::sync::Arc; use std::thread; use webrender_api; impl<'a> CanvasPaintThread<'a> { /// It reads image data from the canvas /// canvas_size: The size of the canvas we're reading from /// read_rect: The area of the canvas we want to read from fn read_pixels(&self, read_rect: Rect, canvas_size: Size2D) -> Vec{ let canvas_size = canvas_size.to_i32(); let canvas_rect = Rect::new(Point2D::new(0i32, 0i32), canvas_size); let src_read_rect = canvas_rect.intersection(&read_rect).unwrap_or(Rect::zero()); let mut image_data = vec![]; if src_read_rect.is_empty() || canvas_size.width <= 0 && canvas_size.height <= 0 { return image_data; } let data_surface = self.drawtarget.snapshot().get_data_surface(); let mut src_data = Vec::new(); data_surface.with_data(|element| { src_data = element.to_vec(); }); let stride = data_surface.stride(); //start offset of the copyable rectangle let mut src = (src_read_rect.origin.y * stride + src_read_rect.origin.x * 4) as usize; //copy the data to the destination vector for _ in 0..src_read_rect.size.height { let row = &src_data[src .. src + (4 * src_read_rect.size.width) as usize]; image_data.extend_from_slice(row); src += stride as usize; } image_data } } pub struct CanvasPaintThread<'a> { drawtarget: DrawTarget, /// TODO(pcwalton): Support multiple paths. path_builder: PathBuilder, state: CanvasPaintState<'a>, saved_states: Vec>, webrender_api: webrender_api::RenderApi, image_key: Option, /// An old webrender image key that can be deleted when the next epoch ends. old_image_key: Option, /// An old webrender image key that can be deleted when the current epoch ends. very_old_image_key: Option, } #[derive(Clone)] struct CanvasPaintState<'a> { draw_options: DrawOptions, fill_style: Pattern, stroke_style: Pattern, stroke_opts: StrokeOptions<'a>, /// The current 2D transform matrix. transform: Transform2D, shadow_offset_x: f64, shadow_offset_y: f64, shadow_blur: f64, shadow_color: Color, } impl<'a> CanvasPaintState<'a> { fn new(antialias: AntialiasMode) -> CanvasPaintState<'a> { CanvasPaintState { draw_options: DrawOptions::new(1.0, CompositionOp::Over, antialias), fill_style: Pattern::Color(ColorPattern::new(Color::black())), stroke_style: Pattern::Color(ColorPattern::new(Color::black())), stroke_opts: StrokeOptions::new(1.0, JoinStyle::MiterOrBevel, CapStyle::Butt, 10.0, &[]), transform: Transform2D::identity(), shadow_offset_x: 0.0, shadow_offset_y: 0.0, shadow_blur: 0.0, shadow_color: Color::transparent(), } } } impl<'a> CanvasPaintThread<'a> { fn new(size: Size2D, webrender_api_sender: webrender_api::RenderApiSender, antialias: AntialiasMode) -> CanvasPaintThread<'a> { let draw_target = CanvasPaintThread::create(size); let path_builder = draw_target.create_path_builder(); let webrender_api = webrender_api_sender.create_api(); CanvasPaintThread { drawtarget: draw_target, path_builder: path_builder, state: CanvasPaintState::new(antialias), saved_states: vec![], webrender_api: webrender_api, image_key: None, old_image_key: None, very_old_image_key: None, } } /// Creates a new `CanvasPaintThread` and returns an `IpcSender` to /// communicate with it. pub fn start(size: Size2D, webrender_api_sender: webrender_api::RenderApiSender, antialias: bool) -> IpcSender { let (sender, receiver) = ipc::channel::().unwrap(); let antialias = if antialias { AntialiasMode::Default } else { AntialiasMode::None }; thread::Builder::new().name("CanvasThread".to_owned()).spawn(move || { let mut painter = CanvasPaintThread::new(size, webrender_api_sender, antialias); loop { let msg = receiver.recv(); match msg.unwrap() { CanvasMsg::Canvas2d(message) => { match message { Canvas2dMsg::FillText(text, x, y, max_width) => painter.fill_text(text, x, y, max_width), Canvas2dMsg::FillRect(ref rect) => painter.fill_rect(rect), Canvas2dMsg::StrokeRect(ref rect) => painter.stroke_rect(rect), Canvas2dMsg::ClearRect(ref rect) => painter.clear_rect(rect), Canvas2dMsg::BeginPath => painter.begin_path(), Canvas2dMsg::ClosePath => painter.close_path(), Canvas2dMsg::Fill => painter.fill(), Canvas2dMsg::Stroke => painter.stroke(), Canvas2dMsg::Clip => painter.clip(), Canvas2dMsg::IsPointInPath(x, y, fill_rule, chan) => { painter.is_point_in_path(x, y, fill_rule, chan) }, Canvas2dMsg::DrawImage( imagedata, image_size, dest_rect, source_rect, smoothing_enabled, ) => { painter.draw_image( imagedata.into(), image_size, dest_rect, source_rect, smoothing_enabled, ) } Canvas2dMsg::DrawImageSelf(image_size, dest_rect, source_rect, smoothing_enabled) => { painter.draw_image_self(image_size, dest_rect, source_rect, smoothing_enabled) } Canvas2dMsg::DrawImageInOther( renderer, image_size, dest_rect, source_rect, smoothing, sender ) => { painter.draw_image_in_other( renderer, image_size, dest_rect, source_rect, smoothing, sender) } Canvas2dMsg::MoveTo(ref point) => painter.move_to(point), Canvas2dMsg::LineTo(ref point) => painter.line_to(point), Canvas2dMsg::Rect(ref rect) => painter.rect(rect), Canvas2dMsg::QuadraticCurveTo(ref cp, ref pt) => { painter.quadratic_curve_to(cp, pt) } Canvas2dMsg::BezierCurveTo(ref cp1, ref cp2, ref pt) => { painter.bezier_curve_to(cp1, cp2, pt) } Canvas2dMsg::Arc(ref center, radius, start, end, ccw) => { painter.arc(center, radius, start, end, ccw) } Canvas2dMsg::ArcTo(ref cp1, ref cp2, radius) => { painter.arc_to(cp1, cp2, radius) } Canvas2dMsg::Ellipse(ref center, radius_x, radius_y, rotation, start, end, ccw) => { painter.ellipse(center, radius_x, radius_y, rotation, start, end, ccw) } Canvas2dMsg::RestoreContext => painter.restore_context_state(), Canvas2dMsg::SaveContext => painter.save_context_state(), Canvas2dMsg::SetFillStyle(style) => painter.set_fill_style(style), Canvas2dMsg::SetStrokeStyle(style) => painter.set_stroke_style(style), Canvas2dMsg::SetLineWidth(width) => painter.set_line_width(width), Canvas2dMsg::SetLineCap(cap) => painter.set_line_cap(cap), Canvas2dMsg::SetLineJoin(join) => painter.set_line_join(join), Canvas2dMsg::SetMiterLimit(limit) => painter.set_miter_limit(limit), Canvas2dMsg::SetTransform(ref matrix) => painter.set_transform(matrix), Canvas2dMsg::SetGlobalAlpha(alpha) => painter.set_global_alpha(alpha), Canvas2dMsg::SetGlobalComposition(op) => painter.set_global_composition(op), Canvas2dMsg::GetImageData(dest_rect, canvas_size, chan) => painter.image_data(dest_rect, canvas_size, chan), Canvas2dMsg::PutImageData( imagedata, offset, image_data_size, dirty_rect, ) => { painter.put_image_data( imagedata.into(), offset, image_data_size, dirty_rect, ) } Canvas2dMsg::SetShadowOffsetX(value) => painter.set_shadow_offset_x(value), Canvas2dMsg::SetShadowOffsetY(value) => painter.set_shadow_offset_y(value), Canvas2dMsg::SetShadowBlur(value) => painter.set_shadow_blur(value), Canvas2dMsg::SetShadowColor(ref color) => painter.set_shadow_color(color.to_azure_style()), } }, CanvasMsg::Close => break, CanvasMsg::Recreate(size) => painter.recreate(size), CanvasMsg::FromScript(message) => { match message { FromScriptMsg::SendPixels(chan) => { painter.send_pixels(chan) } } } CanvasMsg::FromLayout(message) => { match message { FromLayoutMsg::SendData(chan) => { painter.send_data(chan) } } } } } }).expect("Thread spawning failed"); sender } fn save_context_state(&mut self) { self.saved_states.push(self.state.clone()); } fn restore_context_state(&mut self) { if let Some(state) = self.saved_states.pop() { mem::replace(&mut self.state, state); self.drawtarget.set_transform(&self.state.transform); self.drawtarget.pop_clip(); } } fn fill_text(&self, text: String, x: f64, y: f64, max_width: Option) { error!("Unimplemented canvas2d.fillText. Values received: {}, {}, {}, {:?}.", text, x, y, max_width); } fn fill_rect(&self, rect: &Rect) { if is_zero_size_gradient(&self.state.fill_style) { return; // Paint nothing if gradient size is zero. } let draw_rect = Rect::new(rect.origin, match self.state.fill_style { Pattern::Surface(ref surface) => { let surface_size = surface.size(); match (surface.repeat_x, surface.repeat_y) { (true, true) => rect.size, (true, false) => Size2D::new(rect.size.width, surface_size.height as f32), (false, true) => Size2D::new(surface_size.width as f32, rect.size.height), (false, false) => Size2D::new(surface_size.width as f32, surface_size.height as f32), } }, _ => rect.size, } ); if self.need_to_draw_shadow() { self.draw_with_shadow(&draw_rect, |new_draw_target: &DrawTarget| { new_draw_target.fill_rect(&draw_rect, self.state.fill_style.to_pattern_ref(), Some(&self.state.draw_options)); }); } else { self.drawtarget.fill_rect(&draw_rect, self.state.fill_style.to_pattern_ref(), Some(&self.state.draw_options)); } } fn clear_rect(&self, rect: &Rect) { self.drawtarget.clear_rect(rect); } fn stroke_rect(&self, rect: &Rect) { if is_zero_size_gradient(&self.state.stroke_style) { return; // Paint nothing if gradient size is zero. } if self.need_to_draw_shadow() { self.draw_with_shadow(&rect, |new_draw_target: &DrawTarget| { new_draw_target.stroke_rect(rect, self.state.stroke_style.to_pattern_ref(), &self.state.stroke_opts, &self.state.draw_options); }); } else if rect.size.width == 0. || rect.size.height == 0. { let cap = match self.state.stroke_opts.line_join { JoinStyle::Round => CapStyle::Round, _ => CapStyle::Butt }; let stroke_opts = StrokeOptions::new(self.state.stroke_opts.line_width, self.state.stroke_opts.line_join, cap, self.state.stroke_opts.miter_limit, self.state.stroke_opts.mDashPattern); self.drawtarget.stroke_line(rect.origin, rect.bottom_right(), self.state.stroke_style.to_pattern_ref(), &stroke_opts, &self.state.draw_options); } else { self.drawtarget.stroke_rect(rect, self.state.stroke_style.to_pattern_ref(), &self.state.stroke_opts, &self.state.draw_options); } } fn begin_path(&mut self) { self.path_builder = self.drawtarget.create_path_builder() } fn close_path(&self) { self.path_builder.close() } fn fill(&self) { if is_zero_size_gradient(&self.state.fill_style) { return; // Paint nothing if gradient size is zero. } self.drawtarget.fill(&self.path_builder.finish(), self.state.fill_style.to_pattern_ref(), &self.state.draw_options); } fn stroke(&self) { if is_zero_size_gradient(&self.state.stroke_style) { return; // Paint nothing if gradient size is zero. } self.drawtarget.stroke(&self.path_builder.finish(), self.state.stroke_style.to_pattern_ref(), &self.state.stroke_opts, &self.state.draw_options); } fn clip(&self) { self.drawtarget.push_clip(&self.path_builder.finish()); } fn is_point_in_path(&mut self, x: f64, y: f64, _fill_rule: FillRule, chan: IpcSender) { let path = self.path_builder.finish(); let result = path.contains_point(x, y, &self.state.transform); self.path_builder = path.copy_to_builder(); chan.send(result).unwrap(); } fn draw_image(&self, image_data: Vec, image_size: Size2D, dest_rect: Rect, source_rect: Rect, smoothing_enabled: bool) { // We round up the floating pixel values to draw the pixels let source_rect = source_rect.ceil(); // It discards the extra pixels (if any) that won't be painted let image_data = crop_image(image_data, image_size, source_rect); if self.need_to_draw_shadow() { let rect = Rect::new(Point2D::new(dest_rect.origin.x as f32, dest_rect.origin.y as f32), Size2D::new(dest_rect.size.width as f32, dest_rect.size.height as f32)); self.draw_with_shadow(&rect, |new_draw_target: &DrawTarget| { write_image(&new_draw_target, image_data, source_rect.size, dest_rect, smoothing_enabled, self.state.draw_options.composition, self.state.draw_options.alpha); }); } else { write_image(&self.drawtarget, image_data, source_rect.size, dest_rect, smoothing_enabled, self.state.draw_options.composition, self.state.draw_options.alpha); } } fn draw_image_self(&self, image_size: Size2D, dest_rect: Rect, source_rect: Rect, smoothing_enabled: bool) { // Reads pixels from source image // In this case source and target are the same canvas let image_data = self.read_pixels(source_rect.to_i32(), image_size); if self.need_to_draw_shadow() { let rect = Rect::new(Point2D::new(dest_rect.origin.x as f32, dest_rect.origin.y as f32), Size2D::new(dest_rect.size.width as f32, dest_rect.size.height as f32)); self.draw_with_shadow(&rect, |new_draw_target: &DrawTarget| { write_image(&new_draw_target, image_data, source_rect.size, dest_rect, smoothing_enabled, self.state.draw_options.composition, self.state.draw_options.alpha); }); } else { // Writes on target canvas write_image(&self.drawtarget, image_data, image_size, dest_rect, smoothing_enabled, self.state.draw_options.composition, self.state.draw_options.alpha); } } fn draw_image_in_other(&self, renderer: IpcSender, image_size: Size2D, dest_rect: Rect, source_rect: Rect, smoothing_enabled: bool, sender: IpcSender<()>) { let mut image_data = self.read_pixels(source_rect.to_i32(), image_size); // TODO: avoid double byte_swap. byte_swap(&mut image_data); let msg = CanvasMsg::Canvas2d(Canvas2dMsg::DrawImage( image_data.into(), source_rect.size, dest_rect, source_rect, smoothing_enabled, )); renderer.send(msg).unwrap(); // We acknowledge to the caller here that the data was sent to the // other canvas so that if JS immediately afterwards try to get the // pixels of the other one, it won't retrieve the other values. sender.send(()).unwrap(); } fn move_to(&self, point: &Point2D) { self.path_builder.move_to(*point) } fn line_to(&self, point: &Point2D) { self.path_builder.line_to(*point) } fn rect(&self, rect: &Rect) { self.path_builder.move_to(Point2D::new(rect.origin.x, rect.origin.y)); self.path_builder.line_to(Point2D::new(rect.origin.x + rect.size.width, rect.origin.y)); self.path_builder.line_to(Point2D::new(rect.origin.x + rect.size.width, rect.origin.y + rect.size.height)); self.path_builder.line_to(Point2D::new(rect.origin.x, rect.origin.y + rect.size.height)); self.path_builder.close(); } fn quadratic_curve_to(&self, cp: &Point2D, endpoint: &Point2D) { self.path_builder.quadratic_curve_to(cp, endpoint) } fn bezier_curve_to(&self, cp1: &Point2D, cp2: &Point2D, endpoint: &Point2D) { self.path_builder.bezier_curve_to(cp1, cp2, endpoint) } fn arc(&self, center: &Point2D, radius: AzFloat, start_angle: AzFloat, end_angle: AzFloat, ccw: bool) { self.path_builder.arc(*center, radius, start_angle, end_angle, ccw) } fn arc_to(&self, cp1: &Point2D, cp2: &Point2D, radius: AzFloat) { let cp0 = self.path_builder.get_current_point(); let cp1 = *cp1; let cp2 = *cp2; if (cp0.x == cp1.x && cp0.y == cp1.y) || cp1 == cp2 || radius == 0.0 { self.line_to(&cp1); return; } // if all three control points lie on a single straight line, // connect the first two by a straight line let direction = (cp2.x - cp1.x) * (cp0.y - cp1.y) + (cp2.y - cp1.y) * (cp1.x - cp0.x); if direction == 0.0 { self.line_to(&cp1); return; } // otherwise, draw the Arc let a2 = (cp0.x - cp1.x).powi(2) + (cp0.y - cp1.y).powi(2); let b2 = (cp1.x - cp2.x).powi(2) + (cp1.y - cp2.y).powi(2); let d = { let c2 = (cp0.x - cp2.x).powi(2) + (cp0.y - cp2.y).powi(2); let cosx = (a2 + b2 - c2) / (2.0 * (a2 * b2).sqrt()); let sinx = (1.0 - cosx.powi(2)).sqrt(); radius / ((1.0 - cosx) / sinx) }; // first tangent point let anx = (cp1.x - cp0.x) / a2.sqrt(); let any = (cp1.y - cp0.y) / a2.sqrt(); let tp1 = Point2D::new(cp1.x - anx * d, cp1.y - any * d); // second tangent point let bnx = (cp1.x - cp2.x) / b2.sqrt(); let bny = (cp1.y - cp2.y) / b2.sqrt(); let tp2 = Point2D::new(cp1.x - bnx * d, cp1.y - bny * d); // arc center and angles let anticlockwise = direction < 0.0; let cx = tp1.x + any * radius * if anticlockwise { 1.0 } else { -1.0 }; let cy = tp1.y - anx * radius * if anticlockwise { 1.0 } else { -1.0 }; let angle_start = (tp1.y - cy).atan2(tp1.x - cx); let angle_end = (tp2.y - cy).atan2(tp2.x - cx); self.line_to(&tp1); if [cx, cy, angle_start, angle_end].iter().all(|x| x.is_finite()) { self.arc(&Point2D::new(cx, cy), radius, angle_start, angle_end, anticlockwise); } } fn ellipse(&mut self, center: &Point2D, radius_x: AzFloat, radius_y: AzFloat, rotation_angle: AzFloat, start_angle: AzFloat, end_angle: AzFloat, ccw: bool) { self.path_builder.ellipse(*center, radius_x, radius_y, rotation_angle, start_angle, end_angle, ccw); } fn set_fill_style(&mut self, style: FillOrStrokeStyle) { if let Some(pattern) = style.to_azure_pattern(&self.drawtarget) { self.state.fill_style = pattern } } fn set_stroke_style(&mut self, style: FillOrStrokeStyle) { if let Some(pattern) = style.to_azure_pattern(&self.drawtarget) { self.state.stroke_style = pattern } } fn set_line_width(&mut self, width: f32) { self.state.stroke_opts.line_width = width; } fn set_line_cap(&mut self, cap: LineCapStyle) { self.state.stroke_opts.line_cap = cap.to_azure_style(); } fn set_line_join(&mut self, join: LineJoinStyle) { self.state.stroke_opts.line_join = join.to_azure_style(); } fn set_miter_limit(&mut self, limit: f32) { self.state.stroke_opts.miter_limit = limit; } fn set_transform(&mut self, transform: &Transform2D) { self.state.transform = transform.clone(); self.drawtarget.set_transform(transform) } fn set_global_alpha(&mut self, alpha: f32) { self.state.draw_options.alpha = alpha; } fn set_global_composition(&mut self, op: CompositionOrBlending) { self.state.draw_options.set_composition_op(op.to_azure_style()); } fn create(size: Size2D) -> DrawTarget { DrawTarget::new(BackendType::Skia, size, SurfaceFormat::B8G8R8A8) } fn recreate(&mut self, size: Size2D) { // TODO: clear the thread state. https://github.com/servo/servo/issues/17533 self.drawtarget = CanvasPaintThread::create(size); self.state = CanvasPaintState::new(self.state.draw_options.antialias); self.saved_states.clear(); // Webrender doesn't let images change size, so we clear the webrender image key. // TODO: there is an annying race condition here: the display list builder // might still be using the old image key. Really, we should be scheduling the image // for later deletion, not deleting it immediately. // https://github.com/servo/servo/issues/17534 if let Some(image_key) = self.image_key.take() { // If this executes, then we are in a new epoch since we last recreated the canvas, // so `old_image_key` must be `None`. debug_assert!(self.old_image_key.is_none()); self.old_image_key = Some(image_key); } } fn send_pixels(&mut self, chan: IpcSender>) { self.drawtarget.snapshot().get_data_surface().with_data(|element| { chan.send(Some(Vec::from(element).into())).unwrap(); }) } fn send_data(&mut self, chan: IpcSender) { self.drawtarget.snapshot().get_data_surface().with_data(|element| { let size = self.drawtarget.get_size(); let descriptor = webrender_api::ImageDescriptor { width: size.width as u32, height: size.height as u32, stride: None, format: webrender_api::ImageFormat::BGRA8, offset: 0, is_opaque: false, allow_mipmaps: false, }; let data = webrender_api::ImageData::Raw(Arc::new(element.into())); let mut updates = webrender_api::ResourceUpdates::new(); match self.image_key { Some(image_key) => { debug!("Updating image {:?}.", image_key); updates.update_image(image_key, descriptor, data, None); } None => { self.image_key = Some(self.webrender_api.generate_image_key()); debug!("New image {:?}.", self.image_key); updates.add_image(self.image_key.unwrap(), descriptor, data, None); } } if let Some(image_key) = mem::replace(&mut self.very_old_image_key, self.old_image_key.take()) { updates.delete_image(image_key); } self.webrender_api.update_resources(updates); let data = CanvasImageData { image_key: self.image_key.unwrap(), }; chan.send(data).unwrap(); }) } fn image_data( &self, dest_rect: Rect, canvas_size: Size2D, chan: IpcSender, ) { let mut dest_data = self.read_pixels(dest_rect, canvas_size); // bgra -> rgba byte_swap(&mut dest_data); chan.send(dest_data.into()).unwrap(); } // https://html.spec.whatwg.org/multipage/#dom-context-2d-putimagedata fn put_image_data(&mut self, imagedata: Vec, offset: Vector2D, image_data_size: Size2D, mut dirty_rect: Rect) { if image_data_size.width <= 0.0 || image_data_size.height <= 0.0 { return } assert_eq!(image_data_size.width * image_data_size.height * 4.0, imagedata.len() as f64); // Step 1. TODO (neutered data) // Step 2. if dirty_rect.size.width < 0.0f64 { dirty_rect.origin.x += dirty_rect.size.width; dirty_rect.size.width = -dirty_rect.size.width; } if dirty_rect.size.height < 0.0f64 { dirty_rect.origin.y += dirty_rect.size.height; dirty_rect.size.height = -dirty_rect.size.height; } // Step 3. if dirty_rect.origin.x < 0.0f64 { dirty_rect.size.width += dirty_rect.origin.x; dirty_rect.origin.x = 0.0f64; } if dirty_rect.origin.y < 0.0f64 { dirty_rect.size.height += dirty_rect.origin.y; dirty_rect.origin.y = 0.0f64; } // Step 4. if dirty_rect.max_x() > image_data_size.width { dirty_rect.size.width = image_data_size.width - dirty_rect.origin.x; } if dirty_rect.max_y() > image_data_size.height { dirty_rect.size.height = image_data_size.height - dirty_rect.origin.y; } // 5) If either dirtyWidth or dirtyHeight is negative or zero, // stop without affecting any bitmaps if dirty_rect.size.width <= 0.0 || dirty_rect.size.height <= 0.0 { return } // Step 6. let dest_rect = dirty_rect.translate(&offset).to_i32(); // azure_hl operates with integers. We need to cast the image size let image_size = image_data_size.to_i32(); let first_pixel = dest_rect.origin - offset.to_i32(); let mut src_line = (first_pixel.y * (image_size.width * 4) + first_pixel.x * 4) as usize; let mut dest = Vec::with_capacity((dest_rect.size.width * dest_rect.size.height * 4) as usize); for _ in 0 .. dest_rect.size.height { let mut src_offset = src_line; for _ in 0 .. dest_rect.size.width { let alpha = imagedata[src_offset + 3] as u16; // add 127 before dividing for more accurate rounding let premultiply_channel = |channel: u8| (((channel as u16 * alpha) + 127) / 255) as u8; dest.push(premultiply_channel(imagedata[src_offset + 2])); dest.push(premultiply_channel(imagedata[src_offset + 1])); dest.push(premultiply_channel(imagedata[src_offset + 0])); dest.push(imagedata[src_offset + 3]); src_offset += 4; } src_line += (image_size.width * 4) as usize; } if let Some(source_surface) = self.drawtarget.create_source_surface_from_data( &dest, dest_rect.size, dest_rect.size.width * 4, SurfaceFormat::B8G8R8A8) { self.drawtarget.copy_surface(source_surface, Rect::new(Point2D::new(0, 0), dest_rect.size), dest_rect.origin); } } fn set_shadow_offset_x(&mut self, value: f64) { self.state.shadow_offset_x = value; } fn set_shadow_offset_y(&mut self, value: f64) { self.state.shadow_offset_y = value; } fn set_shadow_blur(&mut self, value: f64) { self.state.shadow_blur = value; } fn set_shadow_color(&mut self, value: Color) { self.state.shadow_color = value; } // https://html.spec.whatwg.org/multipage/#when-shadows-are-drawn fn need_to_draw_shadow(&self) -> bool { self.state.shadow_color.a != 0.0f32 && (self.state.shadow_offset_x != 0.0f64 || self.state.shadow_offset_y != 0.0f64 || self.state.shadow_blur != 0.0f64) } fn create_draw_target_for_shadow(&self, source_rect: &Rect) -> DrawTarget { let draw_target = self.drawtarget.create_similar_draw_target(&Size2D::new(source_rect.size.width as i32, source_rect.size.height as i32), self.drawtarget.get_format()); let matrix = Transform2D::identity() .pre_translate(-source_rect.origin.to_vector().cast().unwrap()) .pre_mul(&self.state.transform); draw_target.set_transform(&matrix); draw_target } fn draw_with_shadow(&self, rect: &Rect, draw_shadow_source: F) where F: FnOnce(&DrawTarget) { let shadow_src_rect = self.state.transform.transform_rect(rect); let new_draw_target = self.create_draw_target_for_shadow(&shadow_src_rect); draw_shadow_source(&new_draw_target); self.drawtarget.draw_surface_with_shadow(new_draw_target.snapshot(), &Point2D::new(shadow_src_rect.origin.x as AzFloat, shadow_src_rect.origin.y as AzFloat), &self.state.shadow_color, &Vector2D::new(self.state.shadow_offset_x as AzFloat, self.state.shadow_offset_y as AzFloat), (self.state.shadow_blur / 2.0f64) as AzFloat, self.state.draw_options.composition); } } impl<'a> Drop for CanvasPaintThread<'a> { fn drop(&mut self) { let mut updates = webrender_api::ResourceUpdates::new(); if let Some(image_key) = self.old_image_key.take() { updates.delete_image(image_key); } if let Some(image_key) = self.very_old_image_key.take() { updates.delete_image(image_key); } self.webrender_api.update_resources(updates); } } /// Used by drawImage to get rid of the extra pixels of the image data that /// won't be copied to the canvas /// image_data: Color pixel data of the image /// image_size: Image dimensions /// crop_rect: It determines the area of the image we want to keep fn crop_image(image_data: Vec, image_size: Size2D, crop_rect: Rect) -> Vec{ // We're going to iterate over a pixel values array so we need integers let crop_rect = crop_rect.to_i32(); let image_size = image_size.to_i32(); // Assuming 4 bytes per pixel and row-major order for storage // (consecutive elements in a pixel row of the image are contiguous in memory) let stride = image_size.width * 4; let image_bytes_length = image_size.height * image_size.width * 4; let crop_area_bytes_length = crop_rect.size.height * crop_rect.size.width * 4; // If the image size is less or equal than the crop area we do nothing if image_bytes_length <= crop_area_bytes_length { return image_data; } let mut new_image_data = Vec::new(); let mut src = (crop_rect.origin.y * stride + crop_rect.origin.x * 4) as usize; for _ in 0..crop_rect.size.height { let row = &image_data[src .. src + (4 * crop_rect.size.width) as usize]; new_image_data.extend_from_slice(row); src += stride as usize; } new_image_data } /// It writes an image to the destination target /// draw_target: the destination target where the image_data will be copied /// image_data: Pixel information of the image to be written. It takes RGBA8 /// image_size: The size of the image to be written /// dest_rect: Area of the destination target where the pixels will be copied /// smoothing_enabled: It determines if smoothing is applied to the image result fn write_image(draw_target: &DrawTarget, mut image_data: Vec, image_size: Size2D, dest_rect: Rect, smoothing_enabled: bool, composition_op: CompositionOp, global_alpha: f32) { if image_data.is_empty() { return } let image_rect = Rect::new(Point2D::zero(), image_size); // rgba -> bgra byte_swap(&mut image_data); // From spec https://html.spec.whatwg.org/multipage/#dom-context-2d-drawimage // When scaling up, if the imageSmoothingEnabled attribute is set to true, the user agent should attempt // to apply a smoothing algorithm to the image data when it is scaled. // Otherwise, the image must be rendered using nearest-neighbor interpolation. let filter = if smoothing_enabled { Filter::Linear } else { Filter::Point }; // azure_hl operates with integers. We need to cast the image size let image_size = image_size.to_i32(); if let Some(source_surface) = draw_target.create_source_surface_from_data(&image_data, image_size, image_size.width * 4, SurfaceFormat::B8G8R8A8) { let draw_surface_options = DrawSurfaceOptions::new(filter, true); let draw_options = DrawOptions::new(global_alpha, composition_op, AntialiasMode::None); draw_target.draw_surface(source_surface, dest_rect.to_azure_style(), image_rect.to_azure_style(), draw_surface_options, draw_options); } } fn is_zero_size_gradient(pattern: &Pattern) -> bool { if let &Pattern::LinearGradient(ref gradient) = pattern { if gradient.is_zero_size() { return true; } } false } pub trait PointToi32 { fn to_i32(&self) -> Point2D; } impl PointToi32 for Point2D { fn to_i32(&self) -> Point2D { Point2D::new(self.x.to_i32().unwrap(), self.y.to_i32().unwrap()) } } pub trait SizeToi32 { fn to_i32(&self) -> Size2D; } impl SizeToi32 for Size2D { fn to_i32(&self) -> Size2D { Size2D::new(self.width.to_i32().unwrap(), self.height.to_i32().unwrap()) } } pub trait RectToi32 { fn to_i32(&self) -> Rect; fn ceil(&self) -> Rect; } impl RectToi32 for Rect { fn to_i32(&self) -> Rect { Rect::new(Point2D::new(self.origin.x.to_i32().unwrap(), self.origin.y.to_i32().unwrap()), Size2D::new(self.size.width.to_i32().unwrap(), self.size.height.to_i32().unwrap())) } fn ceil(&self) -> Rect { Rect::new(Point2D::new(self.origin.x.ceil(), self.origin.y.ceil()), Size2D::new(self.size.width.ceil(), self.size.height.ceil())) } } pub trait ToAzureStyle { type Target; fn to_azure_style(self) -> Self::Target; } impl ToAzureStyle for Rect { type Target = Rect; fn to_azure_style(self) -> Rect { Rect::new(Point2D::new(self.origin.x as AzFloat, self.origin.y as AzFloat), Size2D::new(self.size.width as AzFloat, self.size.height as AzFloat)) } } impl ToAzureStyle for LineCapStyle { type Target = CapStyle; fn to_azure_style(self) -> CapStyle { match self { LineCapStyle::Butt => CapStyle::Butt, LineCapStyle::Round => CapStyle::Round, LineCapStyle::Square => CapStyle::Square, } } } impl ToAzureStyle for LineJoinStyle { type Target = JoinStyle; fn to_azure_style(self) -> JoinStyle { match self { LineJoinStyle::Round => JoinStyle::Round, LineJoinStyle::Bevel => JoinStyle::Bevel, LineJoinStyle::Miter => JoinStyle::Miter, } } } impl ToAzureStyle for CompositionStyle { type Target = CompositionOp; fn to_azure_style(self) -> CompositionOp { match self { CompositionStyle::SrcIn => CompositionOp::In, CompositionStyle::SrcOut => CompositionOp::Out, CompositionStyle::SrcOver => CompositionOp::Over, CompositionStyle::SrcAtop => CompositionOp::Atop, CompositionStyle::DestIn => CompositionOp::DestIn, CompositionStyle::DestOut => CompositionOp::DestOut, CompositionStyle::DestOver => CompositionOp::DestOver, CompositionStyle::DestAtop => CompositionOp::DestAtop, CompositionStyle::Copy => CompositionOp::Source, CompositionStyle::Lighter => CompositionOp::Add, CompositionStyle::Xor => CompositionOp::Xor, } } } impl ToAzureStyle for BlendingStyle { type Target = CompositionOp; fn to_azure_style(self) -> CompositionOp { match self { BlendingStyle::Multiply => CompositionOp::Multiply, BlendingStyle::Screen => CompositionOp::Screen, BlendingStyle::Overlay => CompositionOp::Overlay, BlendingStyle::Darken => CompositionOp::Darken, BlendingStyle::Lighten => CompositionOp::Lighten, BlendingStyle::ColorDodge => CompositionOp::ColorDodge, BlendingStyle::ColorBurn => CompositionOp::ColorBurn, BlendingStyle::HardLight => CompositionOp::HardLight, BlendingStyle::SoftLight => CompositionOp::SoftLight, BlendingStyle::Difference => CompositionOp::Difference, BlendingStyle::Exclusion => CompositionOp::Exclusion, BlendingStyle::Hue => CompositionOp::Hue, BlendingStyle::Saturation => CompositionOp::Saturation, BlendingStyle::Color => CompositionOp::Color, BlendingStyle::Luminosity => CompositionOp::Luminosity, } } } impl ToAzureStyle for CompositionOrBlending { type Target = CompositionOp; fn to_azure_style(self) -> CompositionOp { match self { CompositionOrBlending::Composition(op) => op.to_azure_style(), CompositionOrBlending::Blending(op) => op.to_azure_style(), } } } pub trait ToAzurePattern { fn to_azure_pattern(&self, drawtarget: &DrawTarget) -> Option; } impl ToAzurePattern for FillOrStrokeStyle { fn to_azure_pattern(&self, drawtarget: &DrawTarget) -> Option { match *self { FillOrStrokeStyle::Color(ref color) => { Some(Pattern::Color(ColorPattern::new(color.to_azure_style()))) }, FillOrStrokeStyle::LinearGradient(ref linear_gradient_style) => { let gradient_stops: Vec = linear_gradient_style.stops.iter().map(|s| { GradientStop { offset: s.offset as AzFloat, color: s.color.to_azure_style() } }).collect(); Some(Pattern::LinearGradient(LinearGradientPattern::new( &Point2D::new(linear_gradient_style.x0 as AzFloat, linear_gradient_style.y0 as AzFloat), &Point2D::new(linear_gradient_style.x1 as AzFloat, linear_gradient_style.y1 as AzFloat), drawtarget.create_gradient_stops(&gradient_stops, ExtendMode::Clamp), &Transform2D::identity()))) }, FillOrStrokeStyle::RadialGradient(ref radial_gradient_style) => { let gradient_stops: Vec = radial_gradient_style.stops.iter().map(|s| { GradientStop { offset: s.offset as AzFloat, color: s.color.to_azure_style() } }).collect(); Some(Pattern::RadialGradient(RadialGradientPattern::new( &Point2D::new(radial_gradient_style.x0 as AzFloat, radial_gradient_style.y0 as AzFloat), &Point2D::new(radial_gradient_style.x1 as AzFloat, radial_gradient_style.y1 as AzFloat), radial_gradient_style.r0 as AzFloat, radial_gradient_style.r1 as AzFloat, drawtarget.create_gradient_stops(&gradient_stops, ExtendMode::Clamp), &Transform2D::identity()))) }, FillOrStrokeStyle::Surface(ref surface_style) => { drawtarget.create_source_surface_from_data(&surface_style.surface_data, surface_style.surface_size, surface_style.surface_size.width * 4, SurfaceFormat::B8G8R8A8) .map(|source_surface| { Pattern::Surface(SurfacePattern::new( source_surface.azure_source_surface, surface_style.repeat_x, surface_style.repeat_y, &Transform2D::identity())) }) } } } } impl ToAzureStyle for RGBA { type Target = Color; fn to_azure_style(self) -> Color { Color::rgba(self.red_f32() as AzFloat, self.green_f32() as AzFloat, self.blue_f32() as AzFloat, self.alpha_f32() as AzFloat) } }