aboutsummaryrefslogtreecommitdiffstats
path: root/components/util
diff options
context:
space:
mode:
authorPatrick Walton <pcwalton@mimiga.net>2014-09-16 22:58:52 -0700
committerPatrick Walton <pcwalton@mimiga.net>2014-10-10 17:02:27 -0700
commit2a790d06dd74b1de0c47d433c7fa3a9d8af03efc (patch)
tree83346e183c3bf7ef3d8d4edf554667bc263e73c4 /components/util
parent878ece58da7f60b45e9230356ac7a5bbf7351e5b (diff)
downloadservo-2a790d06dd74b1de0c47d433c7fa3a9d8af03efc.tar.gz
servo-2a790d06dd74b1de0c47d433c7fa3a9d8af03efc.zip
Use Gecko's simpler Bloom filter instead of one based on hash
stretching. This preserves the usage of the Bloom filter throughout style recalc, but the implementation is rewritten. Provides a 15% improvement on Guardians of the Galaxy.
Diffstat (limited to 'components/util')
-rw-r--r--components/util/bloom.rs407
-rw-r--r--components/util/namespace.rs1
2 files changed, 174 insertions, 234 deletions
diff --git a/components/util/bloom.rs b/components/util/bloom.rs
index 4621697fa50..6795cb889e8 100644
--- a/components/util/bloom.rs
+++ b/components/util/bloom.rs
@@ -4,288 +4,230 @@
//! Simple counting bloom filters.
-extern crate rand;
+use string_cache::{Atom, Namespace};
-use fnv::{FnvState, hash};
-use rand::Rng;
-use std::hash::Hash;
-use std::iter;
-use std::num;
-use std::uint;
+static KEY_SIZE: uint = 12;
+static ARRAY_SIZE: uint = 1 << KEY_SIZE;
+static KEY_MASK: u32 = (1 << KEY_SIZE) - 1;
+static KEY_SHIFT: uint = 16;
-// Just a quick and dirty xxhash embedding.
-
-/// A counting bloom filter.
+/// A counting Bloom filter with 8-bit counters. For now we assume
+/// that having two hash functions is enough, but we may revisit that
+/// decision later.
+///
+/// The filter uses an array with 2**KeySize entries.
+///
+/// Assuming a well-distributed hash function, a Bloom filter with
+/// array size M containing N elements and
+/// using k hash function has expected false positive rate exactly
+///
+/// $ (1 - (1 - 1/M)^{kN})^k $
+///
+/// because each array slot has a
+///
+/// $ (1 - 1/M)^{kN} $
+///
+/// chance of being 0, and the expected false positive rate is the
+/// probability that all of the k hash functions will hit a nonzero
+/// slot.
+///
+/// For reasonable assumptions (M large, kN large, which should both
+/// hold if we're worried about false positives) about M and kN this
+/// becomes approximately
///
-/// A bloom filter is a probabilistic data structure which allows you to add and
-/// remove elements from a set, query the set for whether it may contain an
-/// element or definitely exclude it, and uses much less ram than an equivalent
-/// hashtable.
-#[deriving(Clone)]
+/// $$ (1 - \exp(-kN/M))^k $$
+///
+/// For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
+/// or in other words
+///
+/// $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$
+///
+/// where r is the false positive rate. This can be used to compute
+/// the desired KeySize for a given load N and false positive rate r.
+///
+/// If N/M is assumed small, then the false positive rate can
+/// further be approximated as 4*N^2/M^2. So increasing KeySize by
+/// 1, which doubles M, reduces the false positive rate by about a
+/// factor of 4, and a false positive rate of 1% corresponds to
+/// about M/N == 20.
+///
+/// What this means in practice is that for a few hundred keys using a
+/// KeySize of 12 gives false positive rates on the order of 0.25-4%.
+///
+/// Similarly, using a KeySize of 10 would lead to a 4% false
+/// positive rate for N == 100 and to quite bad false positive
+/// rates for larger N.
pub struct BloomFilter {
- buf: Vec<uint>,
- number_of_insertions: uint,
-}
-
-// Here's where some of the magic numbers came from:
-//
-// m = number of elements in the filter
-// n = size of the filter
-// k = number of hash functions
-//
-// p = Pr[false positive] = 0.01 false positive rate
-//
-// if we have an estimation of the number of elements in the bloom filter, we
-// know m.
-//
-// p = (1 - exp(-kn/m))^k
-// k = (m/n)ln2
-// lnp = -(m/n)(ln2)^2
-// m = -nlnp/(ln2)^2
-// => n = -m(ln2)^2/lnp
-// ~= 10*m
-//
-// k = (m/n)ln2 = 10ln2 ~= 7
-
-static NUMBER_OF_HASHES: uint = 7;
-
-static BITS_PER_BUCKET: uint = 4;
-static BUCKETS_PER_WORD: uint = uint::BITS / BITS_PER_BUCKET;
-
-/// Returns a tuple of (array index, lsr shift amount) to get to the bits you
-/// need. Don't forget to mask with 0xF!
-fn bucket_index_to_array_index(bucket_index: uint) -> (uint, uint) {
- let arr_index = bucket_index / BUCKETS_PER_WORD;
- let shift_amount = (bucket_index % BUCKETS_PER_WORD) * BITS_PER_BUCKET;
- (arr_index, shift_amount)
-}
-
-// Key Stretching
-// ==============
-//
-// Siphash is expensive. Instead of running it `NUMBER_OF_HASHES`, which would
-// be a pretty big hit on performance, we just use it to see a non-cryptographic
-// random number generator. This stretches the hash to get us our
-// `NUMBER_OF_HASHES` array indicies.
-//
-// A hash is a `u64` and comes from SipHash.
-// A shash is a `uint` stretched hash which comes from the XorShiftRng.
-
-fn to_rng(hash: u64) -> rand::XorShiftRng {
- let bottom = (hash & 0xFFFFFFFF) as u32;
- let top = ((hash >> 32) & 0xFFFFFFFF) as u32;
- rand::SeedableRng::from_seed([ 0x97830e05, 0x113ba7bb, bottom, top ])
+ counters: [u8, ..ARRAY_SIZE],
}
-fn stretch<'a>(r: &'a mut rand::XorShiftRng)
- -> iter::Take<rand::Generator<'a, uint, rand::XorShiftRng>> {
- r.gen_iter().take(NUMBER_OF_HASHES)
+impl Clone for BloomFilter {
+ #[inline]
+ fn clone(&self) -> BloomFilter {
+ BloomFilter {
+ counters: self.counters,
+ }
+ }
}
impl BloomFilter {
- /// This bloom filter is tuned to have ~1% false positive rate. In exchange
- /// for this guarantee, you need to have a reasonable upper bound on the
- /// number of elements that will ever be inserted into it. If you guess too
- /// low, your false positive rate will suffer. If you guess too high, you'll
- /// use more memory than is really necessary.
- pub fn new(expected_number_of_insertions: uint) -> BloomFilter {
- let size_in_buckets = 10 * expected_number_of_insertions;
-
- let size_in_words = size_in_buckets / BUCKETS_PER_WORD;
-
- let nonzero_size = if size_in_words == 0 { 1 } else { size_in_words };
-
- let num_words =
- num::checked_next_power_of_two(nonzero_size)
- .unwrap();
-
+ /// Creates a new bloom filter.
+ #[inline]
+ pub fn new() -> BloomFilter {
BloomFilter {
- buf: Vec::from_elem(num_words, 0),
- number_of_insertions: 0,
+ counters: [0, ..ARRAY_SIZE],
}
}
- /// Since the array length must be a power of two, this will return a
- /// bitmask that can be `&`ed with a number to bring it into the range of
- /// the array.
- fn mask(&self) -> uint {
- (self.buf.len()*BUCKETS_PER_WORD) - 1 // guaranteed to be a power of two
+ #[inline]
+ fn first_slot(&self, hash: u32) -> &u8 {
+ &self.counters[hash1(hash) as uint]
}
- /// Converts a stretched hash into a bucket index.
- fn shash_to_bucket_index(&self, shash: uint) -> uint {
- shash & self.mask()
+ #[inline]
+ fn first_mut_slot(&mut self, hash: u32) -> &mut u8 {
+ &mut self.counters[hash1(hash) as uint]
}
- /// Converts a stretched hash into an array and bit index. See the comment
- /// on `bucket_index_to_array_index` for details about the return value.
- fn shash_to_array_index(&self, shash: uint) -> (uint, uint) {
- bucket_index_to_array_index(self.shash_to_bucket_index(shash))
+ #[inline]
+ fn second_slot(&self, hash: u32) -> &u8 {
+ &self.counters[hash2(hash) as uint]
}
- /// Gets the value at a given bucket.
- fn bucket_get(&self, a_idx: uint, shift_amount: uint) -> uint {
- let array_val = self.buf[a_idx];
- (array_val >> shift_amount) & 0xF
+ #[inline]
+ fn second_mut_slot(&mut self, hash: u32) -> &mut u8 {
+ &mut self.counters[hash2(hash) as uint]
}
- /// Sets the value at a given bucket. This will not bounds check, but that's
- /// ok because you've called `bucket_get` first, anyhow.
- fn bucket_set(&mut self, a_idx: uint, shift_amount: uint, new_val: uint) {
- // We can avoid bounds checking here since in order to do a bucket_set
- // we have to had done a `bucket_get` at the same index for it to make
- // sense.
- let old_val = self.buf.as_mut_slice().get_mut(a_idx).unwrap();
- let mask = (1 << BITS_PER_BUCKET) - 1; // selects the right-most bucket
- let select_in_bucket = mask << shift_amount; // selects the correct bucket
- let select_out_of_bucket = !select_in_bucket; // selects everything except the correct bucket
- let new_array_val = (new_val << shift_amount) // move the new_val into the right spot
- | (*old_val & select_out_of_bucket); // mask out the old value, and or it with the new one
- *old_val = new_array_val;
+ #[inline]
+ pub fn clear(&mut self) {
+ self.counters = [0, ..ARRAY_SIZE]
}
- /// Insert a stretched hash into the bloom filter, remembering to saturate
- /// the counter instead of overflowing.
- fn insert_shash(&mut self, shash: uint) {
- let (a_idx, shift_amount) = self.shash_to_array_index(shash);
- let b_val = self.bucket_get(a_idx, shift_amount);
-
-
- // saturate the count.
- if b_val == 0xF {
- return;
+ #[inline]
+ fn insert_hash(&mut self, hash: u32) {
+ {
+ let slot1 = self.first_mut_slot(hash);
+ if !full(slot1) {
+ *slot1 += 1
+ }
}
-
- let new_val = b_val + 1;
-
- self.bucket_set(a_idx, shift_amount, new_val);
- }
-
- /// Insert a hashed value into the bloom filter.
- fn insert_hashed(&mut self, hash: u64) {
- self.number_of_insertions += 1;
- for h in stretch(&mut to_rng(hash)) {
- self.insert_shash(h);
+ {
+ let slot2 = self.second_mut_slot(hash);
+ if !full(slot2) {
+ *slot2 += 1
+ }
}
}
- /// Inserts a value into the bloom filter. Note that the bloom filter isn't
- /// parameterized over the values it holds. That's because it can hold
- /// values of different types, as long as it can get a hash out of them.
- pub fn insert<H: Hash<FnvState>>(&mut self, h: &H) {
- self.insert_hashed(hash(h))
- }
-
- /// Removes a stretched hash from the bloom filter, taking care not to
- /// decrememnt saturated counters.
- ///
- /// It is an error to remove never-inserted elements.
- fn remove_shash(&mut self, shash: uint) {
- let (a_idx, shift_amount) = self.shash_to_array_index(shash);
- let b_val = self.bucket_get(a_idx, shift_amount);
- assert!(b_val != 0, "Removing an element that was never inserted.");
+ /// Inserts an item into the bloom filter.
+ #[inline]
+ pub fn insert<T:BloomHash>(&mut self, elem: &T) {
+ self.insert_hash(elem.bloom_hash())
- // can't do anything if the counter saturated.
- if b_val == 0xF { return; }
-
- self.bucket_set(a_idx, shift_amount, b_val - 1);
}
- /// Removes a hashed value from the bloom filter.
- fn remove_hashed(&mut self, hash: u64) {
- self.number_of_insertions -= 1;
- for h in stretch(&mut to_rng(hash)) {
- self.remove_shash(h);
+ #[inline]
+ fn remove_hash(&mut self, hash: u32) {
+ {
+ let slot1 = self.first_mut_slot(hash);
+ if !full(slot1) {
+ *slot1 -= 1
+ }
+ }
+ {
+ let slot2 = self.second_mut_slot(hash);
+ if !full(slot2) {
+ *slot2 -= 1
+ }
}
}
- /// Removes a value from the bloom filter.
- ///
- /// Be careful of adding and removing lots of elements, especially for
- /// long-lived bloom filters. The counters in each bucket will saturate if
- /// 16 or more elements hash to it, and then stick there. This will hurt
- /// your false positive rate. To fix this, you might consider refreshing the
- /// bloom filter by `clear`ing it, and then reinserting elements at regular,
- /// long intervals.
- ///
- /// It is an error to remove never-inserted elements.
- pub fn remove<H: Hash<FnvState>>(&mut self, h: &H) {
- self.remove_hashed(hash(h))
+ /// Removes an item from the bloom filter.
+ #[inline]
+ pub fn remove<T:BloomHash>(&mut self, elem: &T) {
+ self.remove_hash(elem.bloom_hash())
}
- /// Returns `true` if the bloom filter cannot possibly contain the given
- /// stretched hash.
- fn definitely_excludes_shash(&self, shash: uint) -> bool {
- let (a_idx, shift_amount) = self.shash_to_array_index(shash);
- self.bucket_get(a_idx, shift_amount) == 0
+ #[inline]
+ fn might_contain_hash(&self, hash: u32) -> bool {
+ *self.first_slot(hash) != 0 && *self.second_slot(hash) != 0
}
- /// A hash is definitely excluded iff none of the stretched hashes are in
- /// the bloom filter.
- fn definitely_excludes_hashed(&self, hash: u64) -> bool {
- let mut ret = false;
+ /// Check whether the filter might contain an item. This can
+ /// sometimes return true even if the item is not in the filter,
+ /// but will never return false for items that are actually in the
+ /// filter.
+ #[inline]
+ pub fn might_contain<T:BloomHash>(&self, elem: &T) -> bool {
+ self.might_contain_hash(elem.bloom_hash())
+ }
+}
- // Doing `.any` is slower than this branch-free version.
- for shash in stretch(&mut to_rng(hash)) {
- ret |= self.definitely_excludes_shash(shash);
- }
+pub trait BloomHash {
+ fn bloom_hash(&self) -> u32;
+}
- ret
+impl BloomHash for int {
+ #[inline]
+ fn bloom_hash(&self) -> u32 {
+ ((*self >> 32) ^ *self) as u32
}
+}
- /// A bloom filter can tell you whether or not a value has definitely never
- /// been inserted. Note that bloom filters can give false positives.
- pub fn definitely_excludes<H: Hash<FnvState>>(&self, h: &H) -> bool {
- self.definitely_excludes_hashed(hash(h))
+impl BloomHash for uint {
+ #[inline]
+ fn bloom_hash(&self) -> u32 {
+ ((*self >> 32) ^ *self) as u32
}
+}
- /// A bloom filter can tell you if an element /may/ be in it. It cannot be
- /// certain. But, assuming correct usage, this query will have a low false
- /// positive rate.
- pub fn may_include<H: Hash<FnvState>>(&self, h: &H) -> bool {
- !self.definitely_excludes(h)
+impl BloomHash for Atom {
+ #[inline]
+ fn bloom_hash(&self) -> u32 {
+ ((self.data >> 32) ^ self.data) as u32
}
+}
- /// Returns the number of elements ever inserted into the bloom filter - the
- /// number of elements removed.
- pub fn number_of_insertions(&self) -> uint {
- self.number_of_insertions
+impl BloomHash for Namespace {
+ #[inline]
+ fn bloom_hash(&self) -> u32 {
+ let Namespace(ref atom) = *self;
+ atom.bloom_hash()
}
+}
- /// Returns the number of bytes of memory the bloom filter uses.
- pub fn size(&self) -> uint {
- self.buf.len() * uint::BYTES
- }
+#[inline]
+fn full(slot: &u8) -> bool {
+ *slot == 0xff
+}
- /// Removes all elements from the bloom filter. This is both more efficient
- /// and has better false-positive properties than repeatedly calling `remove`
- /// on every element.
- pub fn clear(&mut self) {
- self.number_of_insertions = 0;
- for x in self.buf.as_mut_slice().iter_mut() {
- *x = 0u;
- }
- }
+#[inline]
+fn hash1(hash: u32) -> u32 {
+ hash & KEY_MASK
+}
+
+#[inline]
+fn hash2(hash: u32) -> u32 {
+ (hash >> KEY_SHIFT) & KEY_MASK
}
#[test]
fn create_and_insert_some_stuff() {
use std::iter::range;
- let mut bf = BloomFilter::new(1000);
+ let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
- assert_eq!(bf.number_of_insertions(), 1000);
-
for i in range(0u, 1000) {
- assert!(bf.may_include(&i));
+ assert!(bf.might_contain(&i));
}
let false_positives =
- range(1001u, 2000).filter(|i| bf.may_include(&i)).count();
+ range(1001u, 2000).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 10) // 1%.
@@ -293,22 +235,18 @@ fn create_and_insert_some_stuff() {
bf.remove(&i);
}
- assert_eq!(bf.number_of_insertions(), 900);
-
for i in range(100u, 1000) {
- assert!(bf.may_include(&i));
+ assert!(bf.might_contain(&i));
}
- let false_positives = range(0u, 100).filter(|i| bf.may_include(&i)).count();
+ let false_positives = range(0u, 100).filter(|i| bf.might_contain(i)).count();
assert!(false_positives < 2); // 2%.
bf.clear();
- assert_eq!(bf.number_of_insertions(), 0);
-
for i in range(0u, 2000) {
- assert!(bf.definitely_excludes(&i));
+ assert!(!bf.might_contain(&i));
}
}
@@ -323,7 +261,7 @@ mod bench {
#[bench]
fn create_insert_1000_remove_100_lookup_100(b: &mut test::Bencher) {
b.iter(|| {
- let mut bf = BloomFilter::new(1000);
+ let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
}
@@ -331,14 +269,14 @@ mod bench {
bf.remove(&i);
}
for i in iter::range(100u, 200) {
- test::black_box(bf.may_include(&i));
+ test::black_box(bf.might_contain(&i));
}
});
}
#[bench]
- fn may_include(b: &mut test::Bencher) {
- let mut bf = BloomFilter::new(1000);
+ fn might_contain(b: &mut test::Bencher) {
+ let mut bf = BloomFilter::new();
for i in iter::range(0u, 1000) {
bf.insert(&i);
@@ -348,7 +286,7 @@ mod bench {
b.bench_n(1000, |b| {
b.iter(|| {
- test::black_box(bf.may_include(&i));
+ test::black_box(bf.might_contain(&i));
i += 1;
});
});
@@ -356,7 +294,7 @@ mod bench {
#[bench]
fn insert(b: &mut test::Bencher) {
- let mut bf = BloomFilter::new(1000);
+ let mut bf = BloomFilter::new();
b.bench_n(1000, |b| {
let mut i = 0u;
@@ -370,7 +308,7 @@ mod bench {
#[bench]
fn remove(b: &mut test::Bencher) {
- let mut bf = BloomFilter::new(1000);
+ let mut bf = BloomFilter::new();
for i in range(0u, 1000) {
bf.insert(&i);
}
@@ -384,7 +322,7 @@ mod bench {
});
});
- test::black_box(bf.may_include(&0u));
+ test::black_box(bf.might_contain(&0u));
}
#[bench]
@@ -396,3 +334,4 @@ mod bench {
})
}
}
+
diff --git a/components/util/namespace.rs b/components/util/namespace.rs
index 810ac7c4456..c138a29706a 100644
--- a/components/util/namespace.rs
+++ b/components/util/namespace.rs
@@ -11,3 +11,4 @@ pub fn from_domstring(url: Option<DOMString>) -> Namespace {
Some(ref s) => Namespace(Atom::from_slice(s.as_slice())),
}
}
+